Benato, B. C., Telea, A. C., and Falc
˜
ao, A. X. (2018). Semi-
supervised learning with interactive label propagation
guided by feature space projections. In Proc. SIB-
GRAPI, pages 392–399.
Benato, B. C., Telea, A. C., and Falcao, A. X. (2021c). It-
erative pseudo-labeling with deep feature annotation
and confidence-based sampling. In Proc. SIBGRAPI,
pages 192–198. IEEE.
Benato, B.C. (2022). Deepfa: “deep feature annotation”.
https://github.com/barbarabenato/DeepFA.
Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020).
A simple framework for contrastive learning of visual
representations. In International conference on ma-
chine learning, pages 1597–1607. PMLR.
Comaniciu, D. and Meer, P. (2002). Mean shift: A robust
approach toward feature space analysis. IEEE TPAMI,
24(5):603–619.
der Maaten, L. J. P. V., Postma, E. O., and den Herik, H.
J. V. (2009). Dimensionality reduction: A compara-
tive review. Technical Report TiCC TR 2009-005.
Espadoto, M., Martins, R., Kerren, A., Hirata, N., and
Telea, A. (2019). Toward a quantitative survey
of dimension reduction techniques. IEEE TVC,
27(3):2153–2173.
Grill, J.-B., Strub, F., Altch
´
e, F., Tallec, C., Richemond,
P. H., Buchatskaya, E., Doersch, C., Pires, B. A., Guo,
Z. D., Azar, M. G., et al. (2020). Bootstrap your own
latent: A new approach to self-supervised learning.
arXiv preprint arXiv:2006.07733.
He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. (2020).
Momentum contrast for unsupervised visual represen-
tation learning. In Proc. IEEE CVPR, pages 9729–
9738.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proc. IEEE
CVPR, pages 770–778.
Hossin, M. and Sulaiman, M. N. (2015). A review on
evaluation metrics for data classification evaluations.
IJDKP, 5(2):1.
Iscen, A., Tolias, G., Avrithis, Y., and Chum, O. (2019).
Label propagation for deep semi-supervised learning.
In Proc. IEEE CVPR, pages 5070–5079.
Jing, L. and Tian, Y. (2020). Self-supervised visual feature
learning with deep neural networks: A survey. IEEE
TPAMI, pages 1–1.
Khosla, P., Teterwak, P., Wang, C., Sarna, A., Tian, Y.,
Isola, P., Maschinot, A., Liu, C., and Krishnan,
D. (2020). Supervised contrastive learning. Proc.
NeurIPS, 33:18661–18673.
Kim, Y., Espadoto, M., Trager, S., Roerdink, J., and Telea,
A. (2022a). SDR-NNP: Sharpened dimensionality re-
duction with neural networks. In Proc. IVAPP.
Kim, Y., Telea, A. C., Trager, S. C., and Roerdink,
J. B. (2022b). Visual cluster separation using high-
dimensional sharpened dimensionality reduction. Inf.
Vis., 21(3):197–219.
Lee, D. H. (2013). Pseudo-label : The simple and efficient
semi-supervised learning method for deep neural net-
works. In Proc. ICML-WREPL.
Miyato, T., Maeda, S.-i., Koyama, M., and Ishii, S. (2018).
Virtual adversarial training: a regularization method
for supervised and semi-supervised learning. IEEE
TPAMI, 41(8):1979–1993.
Nonato, L. and Aupetit, M. (2018). Multidimensional
projection for visual analytics: Linking techniques
with distortions, tasks, and layout enrichment. IEEE
TVCG.
Osaku, D., Cuba, C. F., Suzuki, C. T., Gomes, J. F., and
Falc
˜
ao, A. X. (2020). Automated diagnosis of intesti-
nal parasites: a new hybrid approach and its benefits.
Comput. Biol. Med., 123:103917.
Papa, J. P. and Falc
˜
ao, A. X. (2009). A learning algorithm
for the optimum-path forest classifier. In GbRPR,
pages 195–204. Springer Berlin Heidelberg.
Pham, H., Dai, Z., Xie, Q., and Le, Q. V. (2021). Meta
pseudo labels. In Proc. IEEE CVPR, pages 11557–
11568.
Rauber, P., Falc
˜
ao, A., and Telea, A. (2017a). Projections
as visual aids for classification system design. Inf. Vis.
Rauber, P. E., Fadel, S. G., Falc
˜
ao, A. X., and Telea, A.
(2017b). Visualizing the hidden activity of artificial
neural networks. IEEE TVCG, 23(1).
Rodrigues, F. C. M., Espadoto, M., Jr, R. H., and Telea,
A. (2019). Constructing and visualizing high-quality
classifier decision boundary maps. Information,
10(9):280–297.
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bern-
stein, M., Berg, A. C., and Fei-Fei, L. (2015). Ima-
geNet large scale visual recognition challenge. IJCV,
115(3):211–252.
Sun, C., Shrivastava, A., Singh, S., and Gupta, A. (2017).
Revisiting unreasonable effectiveness of data in deep
learning era. In Proc. ICCV, pages 843–852.
Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P. H., and
Hospedales, T. M. (2018). Learning to compare: Re-
lation network for few-shot learning. In Proc. IEEE
CVPR.
Suzuki, C., Gomes, J., Falc
˜
ao, A., Shimizu, S., and J.Papa
(2013). Automated diagnosis of human intestinal
parasites using optical microscopy images. In Proc.
Symp. Biomedical Imaging, pages 460–463.
van der Maaten, L. (2014). Accelerating t-SNE using tree-
based algorithms. JMLR, 15(1):3221–3245.
Wu, H. and Prasad, S. (2018). Semi-supervised deep learn-
ing using pseudo labels for hyperspectral image clas-
sification. IEEE TIP, 27(3):1259–1270.
VISAPP 2023 - 18th International Conference on Computer Vision Theory and Applications
324