for emotion-cause pair extraction. In Proceedings of
the 58th Annual Meeting of the Association for Com-
putational Linguistics, pages 3707–3717.
Fu, J., Huang, X.-J., and Liu, P. (2021). Spanner: Named
entity re-/recognition as span prediction. In Proceed-
ings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 7183–7195.
Gui, L., Hu, J., He, Y., Xu, R., Lu, Q., and Du, J. (2017).
A question answering approach for emotion cause ex-
traction. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 1593–1602.
Gui, L., Wu, D., Xu, R., Lu, Q., and Zhou, Y. (2016).
Event-driven emotion cause extraction with corpus
construction. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Process-
ing, pages 1639–1649.
Houghton, B., Milani, S., Topin, N., Guss, W., Hofmann,
K., Perez-Liebana, D., Veloso, M., and Salakhutdinov,
R. (2020). Guaranteeing reproducibility in deep learn-
ing competitions. arXiv preprint arXiv:2005.06041.
Khashabi, D., Min, S., Khot, T., Sabharwal, A., Tafjord,
O., Clark, P., and Hajishirzi, H. (2020). Unifiedqa:
Crossing format boundaries with a single qa system.
arXiv preprint arXiv:2005.00700.
Lee, S. Y. M., Chen, Y., and Huang, C.-R. (2010). A text-
driven rule-based system for emotion cause detection.
In Proceedings of the NAACL HLT 2010 workshop on
computational approaches to analysis and generation
of emotion in text, pages 45–53.
Li, X., Feng, J., Meng, Y., Han, Q., Wu, F., and Li, J. (2019).
A unified mrc framework for named entity recogni-
tion. arXiv preprint arXiv:1910.11476.
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov,
V. (2019). Roberta: A robustly optimized bert pre-
training approach. arXiv preprint arXiv:1907.11692.
Mengge, X., Yu, B., Zhang, Z., Liu, T., Zhang, Y., and
Wang, B. (2020). Coarse-to-fine pre-training for
named entity recognition. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 6345–6354.
Nguyen, T.-A. D., Vu, H. M., Son, N. H., and Nguyen, M.-
T. (2021). A span extraction approach for informa-
tion extraction on visually-rich documents. In Interna-
tional Conference on Document Analysis and Recog-
nition, pages 353–363. Springer.
Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. (2016).
Squad: 100,000+ questions for machine comprehen-
sion of text. arXiv preprint arXiv:1606.05250.
Sun, T.-X., Liu, X.-Y., Qiu, X.-P., and Huang, X.-J. (2022).
Paradigm shift in natural language processing. Ma-
chine Intelligence Research, 19(3):169–183.
Wei, P., Zhao, J., and Mao, W. (2020). Effective inter-clause
modeling for end-to-end emotion-cause pair extrac-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
3171–3181.
Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz,
M., et al. (2020). Transformers: State-of-the-art nat-
ural language processing. In Proceedings of the 2020
conference on empirical methods in natural language
processing: system demonstrations, pages 38–45.
Xia, R. and Ding, Z. (2019). Emotion-cause pair extraction:
A new task to emotion analysis in texts. In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 1003–1012.
Yan, H., Gui, L., Pergola, G., and He, Y. (2021). Posi-
tion bias mitigation: A knowledge-aware graph model
for emotion cause extraction. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume
1: Long Papers), pages 3364–3375.
Emotion-Cause Pair Extraction as Question Answering
995