detection using a nonparametric bayesian approach and
feature selection. IEEE Access, 7, 52181-52190.
doi:10.1109/ACCESS.2019.2912115
Amouri, A., Alaparthy, V. T., & Morgera, S. D. (Apr 2018).
Cross layer-based intrusion detection based on network
behavior for IoT. Paper presented at the
1-4. doi:10.1109/WAMICON.2018.8363921 Retrieved
from https://ieeexplore.ieee.org/document/8363921
Andrea, I., Chrysostomou, C., & Hadjichristofi, G. (Jul
2015). Internet of things: Security vulnerabilities and
challenges. Paper presented at the 180-187.
doi:10.1109/ISCC.2015.7405513 Retrieved from
https://ieeexplore.ieee.org/document/7405513
Anthi, E., Williams, L., Slowinska, M., Theodorakopoulos,
G., & Burnap, P. (2019). A supervised intrusion
detection system for smart home IoT devices. IEEE
Internet of Things Journal, 6(5), 9042-9053.
doi:10.1109/JIOT.2019.2926365
Bagaa, M., Taleb, T., Bernabe, J. B., & Skarmeta, A.
(2020). A machine learning security framework for iot
systems. IEEE Access, 8, 114066-114077. doi:10.1109/
ACCESS.2020.2996214
Brun, O., & Yin, Y. (Jun 2019). Random neural networks
and deep learning for attack detection at the edge. Paper
presented at the 11-14. doi:10.1109/ICFC.2019.00009
Retrieved fromhttps://ieeexplore.ieee.org/document/
8822151
Chaabouni, N., Mosbah, M., Zemmari, A., Sauvignac, C.,
& Faruki, P. (2019). Network intrusion detection for
IoT security based on learning techniques. IEEE
Communications Surveys & Tutorials, 21(3), 2671-
2701. doi:10.1109/COMST.2019.2896380
Davis, B. D., Mason, J. C., & Anwar, M. (2020).
Vulnerability studies and security postures of IoT
devices: A smart home case study. IEEE Internet of
Things Journal, 7(10), 10102-10110. doi:10.1109/JIOT
.2020.2983983
Fadul, M., Reising, D., Loveless, T. D., & Ofoli, A. (2021).
Nelder-mead simplex channel estimation for the RF-
DNA fingerprinting of OFDM transmitters under
rayleigh fading conditions. IEEE Transactions on
Information Forensics and Security, 16, 2381-2396.
doi:10.1109/TIFS.2021.3054524
Hamza, A., Gharakheili, H., Benson, T., & Sivaraman, V.
(Apr 3, 2019). Detecting volumetric attacks on loT
devices via SDN-based monitoring of MUD
activity. Paper presented at the 36-48.
doi:10.1145/3314148.3314352 Retrieved from http://
dl.acm.org/citation.cfm?id=3314352
Jan, S. U., Ahmed, S., Shakhov, V., & Koo, I. (2019).
Toward a lightweight intrusion detection system for the
internet of things. IEEE Access, 7, 42450-42471.
doi:10.1109/ACCESS.2019.2907965
Kabir, E., Hu, J., Wang, H., & Zhuo, G. (2018). A novel
statistical technique for intrusion detection
systems. Future Generation Computer Systems, 79,
303-318. doi:10.1016/j.future.2017.01.029
McDermott, C. D., Majdani, F., & Petrovski, A. V. (Jul
2018). Botnet detection in the internet of things using
deep learning approaches. Paper presented at the 1-8.
doi:10.1109/IJCNN.2018.8489489 Retrieved from
https://ieeexplore.ieee.org/document/8489489
Meidan, Y., Bohadana, M., Mathov, Y., Mirsky, Y.,
Shabtai, A., Breitenbacher, D., & Elovici, Y. (2018). N-
BaIoT-network-based detection of IoT botnet
attacks using deep autoencoders. IEEE Pervasive
Computing, 17(3), 12-22. doi:10.1109/MPRV.2018.
03367731
Mishra, P., Varadharajan, V., Tupakula, U., & Pilli, E. S.
(2019). A detailed investigation and analysis of using
machine learning techniques for intrusion
detection. IEEE Communications Surveys and
Tutorials, 21(1), 686-728. doi:10.1109/COMST.2018.
2847722
Moukhafi, M., El Yassini, K., & Bri, S. (2018). A novel
hybrid GA and SVM with PSO feature selection for
intrusion detection system. International Journal of
Advances in Scientific Research and Engineering, 4(5),
129-134. doi:10.31695/IJASRE.2018.32724
Restuccia, F., D'Oro, S., & Melodia, T. (2018). Securing the
internet of things in the age of machine learning and
software-defined networking. IEEE Internet of Things
Journal, 5(6), 4829-4842. doi:10.1109/JIOT.2018.
2846040
Senthil, G. A., Raaza, A., & Kumar, N. (2021). Internet of
things multi hop energy efficient cluster-based routing
using particle swarm optimization. Wireless
Networks, 27(8), 5207-5215. doi:10.1007/s11276-021-
02801-0
Shui Yu, Wanlei Zhou, Doss, R., & Weijia Jia. (2011).
Traceback of DDoS attacks using entropy
variations. IEEE Transactions on Parallel and
Distributed Systems, 22(3), 412-425. doi:10.1109/
TPDS.2010.97
Shukla, P. (Sep 2017). ML-IDS: A machine learning
approach to detect wormhole attacks in internet of
things. Paper presented at the 234-240.
doi:10.1109/IntelliSys.2017.8324298 Retrieved
from https://ieeexplore.ieee.org/document/8324298
Vijayanand, R., Devaraj, D., & Kannapiran, B. (2018). A
novel intrusion detection system for wireless mesh
network with hybrid feature selection technique based
on GA and MI. Journal of Intelligent & Fuzzy
Systems, 34(3), 1243-1250. doi:10.3233/JIFS-169421
Yao, H., Fu, D., Zhang, P., Li, M., & Liu, Y. (2019).
MSML: A novel multilevel semi-supervised machine
learning framework for intrusion detection
system. IEEE Internet of Things Journal, 6(2), 1949-
1959. doi:10.1109/JIOT.2018.2873125.