formers for language understanding. arXiv preprint
arXiv:1810.04805.
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., et al. (2020). An image is
worth 16x16 words: Transformers for image recogni-
tion at scale. arXiv preprint arXiv:2010.11929.
Grimme, C., Preuss, M., Adam, L., and Trautmann, H.
(2017). Social bots: Human-like by means of human
control? Big data, 5(4):279–293.
Huang, Z., Lv, Z., Han, X., Li, B., Lu, M., and Li, D.
(2022). Social bot-aware graph neural network for
early rumor detection. In Proceedings of the 29th In-
ternational Conference on Computational Linguistics,
pages 6680–6690.
Jin, Z., Cao, J., Guo, H., Zhang, Y., and Luo, J. (2017).
Multimodal fusion with recurrent neural networks for
rumor detection on microblogs. In Proceedings of
the 25th ACM international conference on Multime-
dia, pages 795–816.
Khattar, D., Goud, J. S., Gupta, M., and Varma, V. (2019).
Mvae: Multimodal variational autoencoder for fake
news detection. In The world wide web conference,
pages 2915–2921.
Kirchknopf, A., Slijepcevic, D., and Zeppelzauer, M.
(2021). Multimodal detection of information disorder
from social media. arXiv preprint arXiv:2105.15165.
Lewandowsky, S., Ecker, U. K., and Cook, J. (2017). Be-
yond misinformation: Understanding and coping with
the “post-truth” era. Journal of applied research in
memory and cognition, 6(4):353–369.
Lu, Y.-J. and Li, C.-T. (2020). Gcan: Graph-aware co-
attention networks for explainable fake news detection
on social media. arXiv preprint arXiv:2004.11648.
Ma, X. and Hovy, E. (2016). End-to-end sequence label-
ing via bi-directional lstm-cnns-crf. arXiv preprint
arXiv:1603.01354.
Marra, F., Gragnaniello, D., Cozzolino, D., and Verdo-
liva, L. (2018). Detection of gan-generated fake im-
ages over social networks. In 2018 IEEE conference
on multimedia information processing and retrieval
(MIPR), pages 384–389. IEEE.
Mateen, M., Wen, J., Song, S., and Huang, Z. (2018).
Fundus image classification using vgg-19 architecture
with pca and svd. Symmetry, 11(1):1.
Pan, J. Z., Pavlova, S., Li, C., Li, N., Li, Y., and Liu,
J. (2018). Content based fake news detection us-
ing knowledge graphs. In International semantic web
conference, pages 669–683. Springer.
P
´
erez-Rosas, V., Kleinberg, B., Lefevre, A., and Mihalcea,
R. (2017). Automatic detection of fake news. arXiv
preprint arXiv:1708.07104.
Qassim, H., Verma, A., and Feinzimer, D. (2018). Com-
pressed residual-vgg16 cnn model for big data places
image recognition. In 2018 IEEE 8th annual com-
puting and communication workshop and conference
(CCWC), pages 169–175. IEEE.
Shao, Y., Sun, J., Zhang, T., Jiang, Y., Ma, J., and Li, J.
(2022). Fake news detection based on multi-modal
classifier ensemble. In Proceedings of the 1st Interna-
tional Workshop on Multimedia AI against Disinfor-
mation, pages 78–86.
Singhal, S., Shah, R. R., Chakraborty, T., Kumaraguru, P.,
and Satoh, S. (2019). Spotfake: A multi-modal frame-
work for fake news detection. In 2019 IEEE fifth inter-
national conference on multimedia big data (BigMM),
pages 39–47. IEEE.
Steinebach, M., Gotkowski, K., and Liu, H. (2019). Fake
news detection by image montage recognition. In
Proceedings of the 14th International Conference on
Availability, Reliability and Security, pages 1–9.
Vinyals, O., Toshev, A., Bengio, S., and Erhan, D. (2015).
Show and tell: A neural image caption generator. In
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 3156–3164.
Wang, Y., Ma, F., Jin, Z., Yuan, Y., Xun, G., Jha, K., Su,
L., and Gao, J. (2018). Eann: Event adversarial neu-
ral networks for multi-modal fake news detection. In
Proceedings of the 24th acm sigkdd international con-
ference on knowledge discovery & data mining, pages
849–857.
You, Q., Cao, L., Jin, H., and Luo, J. (2016). Robust visual-
textual sentiment analysis: When attention meets tree-
structured recursive neural networks. In Proceedings
of the 24th ACM international conference on Multi-
media, pages 1008–1017.
Zhou, X., Zafarani, R., Shu, K., and Liu, H. (2019). Fake
news: Fundamental theories, detection strategies and
challenges. In Proceedings of the twelfth ACM inter-
national conference on web search and data mining,
pages 836–837.
FakeRevealer: A Multimodal Framework for Revealing the Falsity of Online Tweets Using Transformer-Based Architectures
963