Brook, J. S., Zhang, C., Brook, D. W., and Leukefeld, C. G.
(2015). Compulsive buying: Earlier illicit drug use,
impulse buying, depression, and adult ADHD symp-
toms. Psychiatry Research, 228(3):312–317.
Butler, R., Hinton, E., Kirwan, M., and Salih, A. (2022).
Customer behaviour classification using simulated
transactional data. Proceedings of the European Mod-
eling & Simulation Symposium, EMSS.
Chen, T.-H. (2020). Do you know your customer? bank risk
assessment based on machine learning. Applied Soft
Computing, 86:105779.
Culjak, I., Abram, D., Pribanic, T., Dzapo, H., and Cifrek,
M. (2012). A brief introduction to opencv. In
2012 Proceedings of the 35th International Conven-
tion MIPRO, pages 1725–1730.
Efron, B. and Tibshirani, R. J. (1993). An Introduction to
the Bootstrap. Springer US, Boston, MA.
Fawaz, H. I., Forestier, G., Weber, J., Idoumghar, L., and
Muller, P.-A. (2019). Deep learning for time series
classification: a review. Data Mining and Knowledge
Discovery, 33(4):917–963.
Financial Conduct Authority (2004). Cob 5.2 Know Your
Customer – fca handbook. https://www.handbook.fca.
org.uk/handbook/COB/5/2.html?date=2007-10-31.
Gong, X.-Y., Su, H., Xu, D., Zhang, Z.-T., Shen, F., and
Yang, H.-B. (2018). An overview of contour detection
approaches. International Journal of Automation and
Computing, 15(6):656–672.
GOV.UK (2016). ’Know Your Customer’ guid-
ance. https://www.gov.uk/government/
publications/know-your-customer-guidance/
know-your-customer-guidance-accessible-version.
Hackshaw, A. (2008). Small studies: Strengths
and limitations. European Respiratory Journal,
32(5):1141–1143.
Hatami, N., Gavet, Y., and Debayle, J. (2017). Classifi-
cation of time-series images using deep convolutional
neural networks.
Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. R. (2012). Improving neural
networks by preventing co-adaptation of feature de-
tectors.
Joseph, V. R. (2022). Optimal ratio for data splitting. Sta-
tistical Analysis and Data Mining: The ASA Data Sci-
ence Journal, 15(4):531–538.
Khandani, A. E., Kim, A. J., and Lo, A. W. (2010).
Consumer credit-risk models via machine-learning
algorithms. Journal of Banking & Finance,
34(11):2767–2787.
Koehler, M., Tivnan, B., and Bloedorn, E. (2005). Gen-
erating fraud: Agent based financial network model-
ing. In Proceedings of the North American Associa-
tion for Computation Social and Organization Science
(NAACSOS 2005). Notre Dame, IN, page 5.
Kohavi, R. (1995). A study of cross-validation and boot-
strap for accuracy estimation and model selection. In
Proceedings of the 14th International Joint Confer-
ence on Artificial Intelligence - Volume 2, IJCAI’95,
page 1137–1143, San Francisco, CA, USA. Morgan
Kaufmann Publishers Inc.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012).
Imagenet classification with deep convolutional neu-
ral networks. In Proceedings of the 25th Interna-
tional Conference on Neural Information Processing
Systems - Volume 1, NIPS’12, page 1097–1105, Red
Hook, NY, USA. Curran Associates Inc.
LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11):2278–2324.
Lin, M., Chen, Q., and Yan, S. (2013). Network in network.
arXiv preprint arXiv:1312.4400.
Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Doll
´
ar, P.
(2017). Focal loss for dense object detection.
Lines, J., Taylor, S. L., and Bagnall, A. (2016). Hive-cote:
The hierarchical vote collective of transformation-
based ensembles for time series classification. 2016
IEEE 16th International Conference on Data Mining
(ICDM), pages 1041–1046.
Marwan, N. (2011). How to avoid potential pitfalls in recur-
rence plot based data analysis. International Journal
of Bifurcation and Chaos, 21(04):1003–1017. Pub-
lisher: World Scientific Publishing Co.
Navigli, R. (2009). Word sense disambiguation: A survey.
ACM Comput. Surv., 41(2).
Ogonsola, F. and Pannifer, S. (2017). AMLD4/
AMLD5 KYCC: Know your compliance costs.
https://www.fstech.co.uk/fst/mitek/Hyperion-
Whitepaper-Final-for-Release-June2017.pdf.
PassFort (2015). Passfort. https://www.passfort.com/.
Ross, S. M. (2009). DESCRIPTIVE STATISTICS. In In-
troduction to Probability and Statistics for Engineers
and Scientists, pages 9–53. Elsevier.
Sinanc, D., Demirezen, U., and Sa
˘
gıro
˘
glu, c. (2021). Ex-
plainable credit card fraud detection with image con-
version. ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal, 10(1):63–76.
Suzuki, S. and Abe, K. (1985). Topological structural anal-
ysis of digitized binary images by border following.
Computer Vision, Graphics, and Image Processing,
30(1):32–46.
UK Finance (2022). Card spending update for au-
gust 2022. https://www.ukfinance.org.uk/data-and-
research/data/card-spending.
Umer, M., Imtiaz, Z., Ullah, S., Mehmood, A., Choi, G. S.,
and On, B.-W. (2020). Fake news stance detection
using deep learning architecture (cnn-lstm). IEEE Ac-
cess, 8:156695–156706.
Wang, Z. and Oates, T. (2015). Spatially encoding temporal
correlations to classify temporal data using convolu-
tional neural networks.
Wolford, B. (2016). Regulation (EU) 2016/679 of the Euro-
pean Parliament and of the Council of 27 April 2016
on the protection of natural persons with regard to the
processing of personal data and on the free movement
of such data, and repealing Directive 95/46/EC (Gen-
eral Data Protection Regulation) (Text with EEA rele-
vance).
Xie, S., Girshick, R., Doll
´
ar, P., Tu, Z., and He, K. (2016).
Aggregated residual transformations for deep neural
networks.
ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence
510