In this study, uncontrolled diabetic patients are
targeted; nevertheless, we expect that this early study
will pave the way for future research that can improve
the accuracy of readmission risk estimates for other
health conditions like heart and kidney diseases. Also,
an improved data set, including other important
features such as age, weight, and laboratory values,
could prove valuable and warrant further study.
REFERENCES
Alamer, A. A., Patanwala, A. E., Aldayyen, A. M., & Fazel,
M. T. (2019). Validation and comparison of two 30-day
re-admission prediction models in patients with
diabetes. Endocrine Practice, 25(11), 1151-1157.
Al-Ars, Z. T., & Aldabbagh, A. M. (2021). Predicting the
Early Re-admission of Diabetic Patients Using
Different Data Mining Techinques. In 2021 Fourth
International Conference on Electrical, Computer and
Communication Technologies (ICECCT) (pp. 1-8).
IEEE.
Ali, F., El-Sappagh, S., Islam, S. R., Kwak, D., Ali, A.,
Imran, M., & Kwak, K. S. (2020). A smart healthcare
monitoring system for heart disease prediction based on
ensemble deep learning and feature fusion. Information
Fusion, 63, 208-222.
Battineni, G., Sagaro, G. G., Chinatalapudi, N., & Amenta,
F. (2020). Applications of machine learning predictive
models in the chronic disease diagnosis. Journal of
personalized medicine, 10(2), 21.
Bhuvan, M. S., Kumar, A., Zafar, A., & Kishore, V. (2016).
Identifying diabetic patients with high risk of
readmission. arXiv preprint arXiv:1602.04257.
Boutayeb, A., Twizell, E. H., Achouayb, K., & Chetouani,
A. (2004). A mathematical model for the burden of
diabetes and its complications. Biomedical engineering
online, 3(1), 1-8.
Dagliati, A., Marini, S., Sacchi, L., Cogni, G., Teliti, M.,
Tibollo, V., & Bellazzi, R. (2018). Machine learning
methods to predict diabetes complications. Journal of
diabetes science and technology, 12(2), 295-302.
Donsa, K., Spat, S., Beck, P., Pieber, T. R., & Holzinger, A.
(2015). Towards personalization of diabetes therapy
using computerized decision support and machine
learning: some open problems and challenges. In Smart
Health (pp. 237-260). Springer, Cham.
Dua, D. and Graff, C. (2019). UCI Machine Learning
Repository [http://archive.ics.uci.edu/ml]. Irvine, CA:
University of California, School of Information and
Computer Science
Eldarrat, A. H. (2011). Diabetic patients: their knowledge
and perception of oral health. Libyan Journal of
Medicine, 6(1), 5691.
Farajollahi, B., Mehmannavaz, M., Mehrjoo, H., Moghbeli,
F., & Sayadi, M. J. (2021). Diabetes diagnosis using
machine learning. Frontiers in Health Informatics,
10(1), 65.
Farajollahi, B., Mehmannavaz, M., Mehrjoo, H., Moghbeli,
F., & Sayadi, M. J. (2021). Predicting hospital
readmission of diabetic patients using machine
learning. Frontiers in Health Informatics, 10(1), 74.
Hu, P., Li, S., Huang, Y. A., & Hu, L. (2019, June).
Predicting hospital readmission of diabetics using deep
forest. In 2019 IEEE International Conference on
Healthcare Informatics (ICHI) (pp. 1-2). IEEE.
Kavakiotis, I., Tsave, O., Salifoglou, A., Maglaveras, N.,
Vlahavas, I., & Chouvarda, I. (2017). Machine learning
and data mining methods in diabetes research.
Computational and structural biotechnology journal,
15, 104-116.
Kim, H., Ross, J. S., Melkus, G. D., Zhao, Z., & Boockvar,
K. (2010). Scheduled and unscheduled hospital
readmissions among diabetes patients. The American
journal of managed care, 16(10), 760.
Kim, S. (2007). Burden of hospitalizations primarily due to
uncontrolled diabetes: implications of inadequate
primary health care in the United States. Diabetes care,
30(5), 1281-1282.
Kohli, P. S., & Arora, S. (2018, December). Application of
machine learning in disease prediction. In 2018 4th
International conference on computing communication
and automation (ICCCA) (pp. 1-4). IEEE.
"Kumar, P. M1. Battineni, G., Sagaro, G. G.,
Chinatalapudi, N., & Amenta, F. (2020). Applications
of machine learning predictive models in the chronic
disease diagnosis. Journal of personalized medicine,
10(2), 21.., Lokesh, S., Varatharajan, R., Babu, G. C.,
& Parthasarathy, P. (2018). Cloud and IoT based
disease prediction and diagnosis system for healthcare
using Fuzzy neural classifier. Future Generation
Computer Systems, 86, 527-534."
Navarro-Pérez, J., Orozco-Beltran, D., Gil-Guillen, V.,
Pallares, V., Valls, F., Fernandez, A., & Tellez-Plaza,
M. (2018). Mortality and cardiovascular disease burden
of uncontrolled diabetes in a registry-based cohort: the
ESCARVAL-risk study. BMC cardiovascular
disorders, 18(1), 1-9.
Neto, C., Senra, F., Leite, J., Rei, N., Rodrigues, R.,
Ferreira, D., & Machado, J. (2021). Different scenarios
for the prediction of hospital readmission of diabetic
patients. Journal of Medical Systems, 45(1), 1-9.
Pham, H. N., Chatterjee, A., Narasimhan, B., Lee, C. W.,
Jha, D. K., Wong, E. Y. F., & Chua, M. C. (2019, July).
Predicting hospital readmission patterns of diabetic
patients using ensemble model and cluster analysis. In
2019 International Conference on System Science and
Engineering (ICSSE) (pp. 273-278). IEEE.
Pujianto, U., Setiawan, A. L., Rosyid, H. A., & Salah, A.
M. M. (2019). Comparison of Naïve Bayes Algorithm
and Decision Tree C4. 5 for Hospital Readmission
Diabetes Patients using HbA1c Measurement. Knowl.
Eng. Data Sci., 2(2), 58-71.
Sharma, A., Agrawal, P., Madaan, V., & Goyal, S. (2019,
June). Prediction on diabetes patient's hospital
readmission rates. In Proceedings of the Third
International Conference on Advanced Informatics for
Computing Research (pp. 1-5).