dings similarity approach. Similarly, ”Semantically
Knowledge Cafe” is created so that authors may pub-
lish their queries and receive appropriate annotation
recommendations. While peers or domain experts re-
view the author’s post, other community members can
appreciate the expert reply by up- and down-voting in
a collaborative way. Finally, the author receives the
notification for their post with recommended annota-
tion. The author can accept the recommended annota-
tion or reject the recommendation, and the final find-
ings are recorded in the database. The semantically
system is available at https://gosemantically.com
ACKNOWLEDGEMENTS
This work is supported by the National Science Foun-
dation grant ID: 2101350.
REFERENCES
Abbas, A., Afzal, M., Hussain, J., Ali, T., Bilal, H. S. M.,
Lee, S., and Jeon, S. (2021). Clinical concept extrac-
tion with lexical semantics to support automatic an-
notation. International Journal of Environmental Re-
search and Public Health, 18(20):10564.
Abbas, A., Afzal, M., Hussain, J., and Lee, S. (2019).
Meaningful information extraction from unstructured
clinical documents. Proc. Asia Pac. Adv. Netw, 48:42–
47.
Abbas, A., Mbouadeu, S. F., Keshtkar, F., DeBello, J., and
Bukhari, S. A. C. (2022). Biomedical scholarly article
editing and sharing using holistic semantic uplifting
approach. In The International FLAIRS Conference
Proceedings, volume 35.
Araujo, S., Houben, G.-J., and Schwabe, D. (2010). Linka-
tor: Enriching web pages by automatically adding
dereferenceable semantic annotations. In Interna-
tional Conference on Web Engineering, pages 355–
369. Springer.
Auer, S., Dietzold, S., and Riechert, T. (2006). Ontowiki–
a tool for social, semantic collaboration. In Inter-
national Semantic Web Conference, pages 736–749.
Springer.
Buffa, M., Gandon, F., Ereteo, G., Sander, P., and Faron, C.
(2008). Sweetwiki: A semantic wiki. Journal of Web
Semantics, 6(1):84–97.
Bukhari, S. A. C. (2017). Semantic enrichment and simi-
larity approximation for biomedical sequence images.
PhD thesis, University of New Brunswick (Canada).
Campos, D., Matos, S., and Oliveira, J. L. (2013). A mod-
ular framework for biomedical concept recognition.
BMC bioinformatics, 14(1):1–21.
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2018). Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint
arXiv:1810.04805.
Han, J., Kamber, M., and Pei, J. (2006). Data mining: con-
cepts and techniques morgan kaufmann. San Fran-
cisco.
Iorio, A. D., Musetti, A., Peroni, S., and Vitali, F. (2012).
Owiki: enabling an ontology-led creation of seman-
tic data. In Human–Computer Systems Interaction:
Backgrounds and Applications 2, pages 359–374.
Springer.
Jonquet, C., Shah, N., Youn, C., Callendar, C., Storey, M.-
A., and Musen, M. (2009). Ncbo annotator: seman-
tic annotation of biomedical data. In International
Semantic Web Conference, Poster and Demo session,
volume 110. Washington DC, USA.
Jovanovi
´
c, J. and Bagheri, E. (2017). Semantic annota-
tion in biomedicine: the current landscape. Journal
of biomedical semantics, 8(1):1–18.
Landis, J. R. and Koch, G. G. (1977). The measurement of
observer agreement for categorical data. biometrics,
pages 159–174.
Laxstr
¨
om, N. and Kanner, A. (2015). Multilingual semantic
mediawiki for finno-ugric dictionaries. In Septentrio
Conference Series, volume 2, pages 75–86.
Macleod, M. (2002). Pubmed: http://www. pubmed. org.
Journal of Neurology, Neurosurgery & Psychiatry,
73(6):746–746.
Mbouadeu, S. F., Abbas, A., Ahmed, F., Keshtkar, F.,
De Bello, J., and Bukhari, S. A. C. (2022). Towards
structured biomedical content authoring and publish-
ing. In 2022 IEEE 16th International Conference on
Semantic Computing (ICSC), pages 175–176. IEEE.
Shah, N. H., Bhatia, N., Jonquet, C., Rubin, D., Chiang,
A. P., and Musen, M. A. (2009). Comparison of con-
cept recognizers for building the open biomedical an-
notator. In BMC bioinformatics, volume 10, pages 1–
9. Springer.
Tramp, S., Heino, N., Auer, S., and Frischmuth, P. (2010).
Rdfauthor: Employing rdfa for collaborative knowl-
edge engineering. In International Conference on
Knowledge Engineering and Knowledge Manage-
ment, pages 90–104. Springer.
Tseytlin, E., Mitchell, K., Legowski, E., Corrigan, J., Cha-
van, G., and Jacobson, R. S. (2016). Noble–flexible
concept recognition for large-scale biomedical natural
language processing. BMC bioinformatics, 17(1):1–
15.
Warren, P., Davies, J., and Brown, D. (2008). The semantic
web-from vision to reality. ICT futures: Delivering
pervasive, real-time and secure services, pages 55–66.
CCH 2023 - Special Session on Machine Learning and Deep Learning for Preventive Healthcare and Clinical Decision Support
648