Gheyas, I. A. and Abdallah, A. E. (2016). Detection and
prediction of insider threats to cyber security: a sys-
tematic literature review and meta-analysis. Big Data
Analytics, 1(1):6.
Gormley, C. and Tong, Z. (2015). Elasticsearch: the defini-
tive guide: a distributed real-time search and analyt-
ics engine. " O’Reilly Media, Inc.".
Homoliak, I., Toffalini, F., Guarnizo, J., Elovici, Y., and
Ochoa, M. (2019). Insight into insiders and it: A sur-
vey of insider threat taxonomies, analysis, modeling,
and countermeasures. ACM Comput. Surv., 52(2).
Hong, J., Kim, J., and Cho, J. (2009). The trend of the se-
curity research for the insider cyber threat. In
´
Sl˛ezak,
D., Kim, T.-h., Fang, W.-C., and Arnett, K. P., editors,
Security Technology, pages 100–107, Berlin, Heidel-
berg. Springer Berlin Heidelberg.
Kholidy, H. A. (2020). Correlation-based sequence align-
ment models for detecting masquerades in cloud com-
puting. IET Information Security, 14(1):39–50.
Kholidy, H. A. and Baiardi, F. (2012). Cidd: A cloud intru-
sion detection dataset for cloud computing and mas-
querade attacks. In 2012 Ninth International Confer-
ence on Information Technology - New Generations,
pages 397–402.
Kim, H.-S. and Cha, S.-D. (2005). Empirical evaluation
of svm-based masquerade detection using unix com-
mands. Computers& Security, 24(2):160 – 168.
Kumar, M. and Hanumanthappa, M. (2013). Scalable intru-
sion detection systems log analysis using cloud com-
puting infrastructure. In 2013 IEEE International
Conference on Computational Intelligence and Com-
puting Research, pages 1–4. IEEE.
Lee, C. B., Roedel, C., and Silenok, E. (2003). Detection
and characterization of port scan attacks. Univeristy
of California, Department of Computer Science and
Engineering.
Lee, Y., Kang, W., and Son, H. (2010). An internet traf-
fic analysis method with mapreduce. In 2010 IEEE/I-
FIP Network Operations and Management Sympo-
sium Workshops, pages 357–361. IEEE.
Liu, L., De Vel, O., Han, Q.-L., Zhang, J., and Xiang,
Y. (2018). Detecting and preventing cyber insider
threats: A survey. IEEE Communications Surveys &
Tutorials, 20(2):1397–1417.
Lv, Z., Zhao, Y., and Li, H. (2019). Modeling user net-
work behavior based on network packet sketches for
masquerade detection. In 2019 IEEE Symposium on
Computers and Communications (ISCC), pages 1–8.
IEEE.
Macak, M., Vaclavek, R., Kusnirakova, D., Matulevi
ˇ
cius,
R., and Buhnova, B. (2022). Scenarios for process-
aware insider attack detection in manufacturing. In
Proceedings of the 17th International Conference on
Availability, Reliability and Security, ARES ’22, New
York, NY, USA. Association for Computing Machin-
ery.
Macak, M., Vanát, I., Merjavý, M., Jevo
ˇ
cin, T., and Buh-
nova, B. (2020). Towards process mining utilization
in insider threat detection from audit logs. In 2020
Seventh International Conference on Social Networks
Analysis, Management and Security (SNAMS), pages
1–6.
Marciani, G., Porretta, M., Nardelli, M., and Italiano, G. F.
(2017). A data streaming approach to link mining in
criminal networks. In 2017 5th International Confer-
ence on Future Internet of Things and Cloud Work-
shops (FiCloudW), pages 138–143.
Nickoloff, J. (2016). Docker in action. Manning Publica-
tions Co.
Pramanik, M. I., Lau, R. Y., Yue, W. T., Ye, Y., and Li, C.
(2017). Big data analytics for security and criminal
investigations. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, 7(4):e1208.
Probst, C. W., Hunker, J., Gollmann, D., and Bishop, M.
(2010). Aspects of Insider Threats. Springer US,
Boston, MA.
Salem, M. B., Hershkop, S., and Stolfo, S. J. (2008). A
survey of insider attack detection research. In Stolfo,
S. J., Bellovin, S. M., Keromytis, A. D., Hershkop, S.,
Smith, S. W., and Sinclair, S., editors, Insider Attack
and Cyber Security: Beyond the Hacker, pages 69–90.
Springer US, Boston, MA.
Salem, M. B. and Stolfo, S. J. (2011). Modeling user
search behavior for masquerade detection. In Som-
mer, R., Balzarotti, D., and Maier, G., editors, Re-
cent Advances in Intrusion Detection, pages 181–200,
Berlin, Heidelberg. Springer Berlin Heidelberg.
Schroeder, J., Xu, J., Chen, H., and Chau, M. (2007). Auto-
mated criminal link analysis based on domain knowl-
edge. Journal of the American society for information
science and technology, 58(6):842–855.
Sharafaldin, I., Lashkari, A. H., and Ghorbani, A. A.
(2018). Toward generating a new intrusion detec-
tion dataset and intrusion traffic characterization. In
ICISSP, pages 108–116.
Xu, J. J. and Chen, H. (2005). Crimenet explorer: A frame-
work for criminal network knowledge discovery. ACM
Trans. Inf. Syst., 23(2):201–226.
Yu, Y. and Graham, J. H. (2006). Anomaly instruction de-
tection of masqueraders and threat evaluation using
fuzzy logic. In 2006 IEEE International Conference
on Systems, Man and Cybernetics, volume 3, pages
2309–2314. IEEE.
CopAS: A Big Data Forensic Analytics System
161