Chethan, K., & Bhandarkar, R. (2020). Hybrid Feature
Extraction Technique on Brain MRI Images for
Content-Based Image Retrieval of Alzheimer’s
Disease. In Advances in Communication, Signal
Processing, VLSI, and Embedded Systems (pp. 127-
141). Springer, Singapore.
Davatzikos, C., Xu, F., An, Y., Fan, Y. and Resnick, S.M
(2009). Longitudinal progression of Alzheimer's-like
patterns of atrophy in normal older adults: the SPARE-
AD index. Brain, 132(8), 2026-2035.
Dineva, K. T., Kitanovski, I., Dimitrovski, I., &
Loshkovska, S. (2022). Combining Static and Dynamic
Features to Improve Longitudinal Image Retrieval for
Alzheimer’s Disease. In International Conference on
ICT Innovations (pp. 107-120). Springer, Cham.
FreeSurfer. [https://surfer.nmr.mgh.harvard.edu/].
Accessed: 21.10.2022.
Gupta, Y., Lama, R. K., Kwon, G. R., & Alzheimer's
Disease Neuroimaging Initiative. (2019). Prediction
and classification of Alzheimer’s disease based on
combined features from apolipoprotein-E genotype,
cerebrospinal fluid, MR, and FDG-PET imaging
biomarkers. Frontiers in computational neuroscience,
13, 72.
Hall, M. A., & Holmes, G. (2003). Benchmarking attribute
selection techniques for discrete class data mining.
IEEE Transactions on Knowledge and Data
engineering, 15(6), 1437-1447.
Jack Jr, C. R., Bennett, D. A., Blennow, K., Carrillo, M. C.,
Dunn, B., Haeberlein, S. B., ... & Silverberg, N. (2018).
NIA-AA research framework: toward a biological
definition of Alzheimer's disease. Alzheimer's &
Dementia, 14(4), 535-562.
Kruthika, K. R., Maheshappa, H. D., & Alzheimer's Disease
Neuroimaging Initiative. (2019a). Multistage classifier-
based approach for Alzheimer's disease prediction and
retrieval. Informatics in Medicine Unlocked, 14, 34-42.
Kruthika, K. R., Maheshappa, H. D., & Alzheimer's Disease
Neuroimaging Initiative. (2019b). CBIR system using
Capsule Networks and 3D CNN for Alzheimer's disease
diagnosis. Informatics in Medicine Unlocked,14,59-68.
Marinescu, R. V., Oxtoby, N. P., Young, A. L., Bron, E. E.,
Toga, A. W., Weiner, M. W., ... & Alexander, D. C.
(2018). Tadpole challenge: Prediction of longitudinal
evolution in Alzheimer's disease. arXiv preprint
arXiv:1805.03909.
Marinescu, R. V., Oxtoby, N. P., Young, A. L., Bron, E. E.,
Toga, A. W., Weiner, M. W., ... & Alexander, D. C.
(2020a). The alzheimer's disease prediction of
longitudinal evolution (TADPOLE) challenge: Results
after 1 year follow-up. arXiv preprint
arXiv:2002.03419.
Marinescu, R. V. (2020b). Modelling the Neuroanatomical
Progression of Alzheimer's Disease and Posterior
Cortical Atrophy. arXiv preprint arXiv:2003.04805.
Meyer, P.F., Tremblay-Mercier, J., Leoutsakos, J., Madjar,
C., Lafaille-Maignan, M.É., Savard, M., Rosa-Neto, P.,
Poirier, J., Etienne, P., Breitner, J. and PREVENT-AD
research group (2019). INTREPAD: A randomized trial
of naproxen to slow progress of presymptomatic
Alzheimer disease. Neurology, 92(18), e2070-e2080.
Moguilner, S., Birba, A., Fittipaldi, S., Gonzalez-Campo,
C., Tagliazucchi, E., Reyes, P., ... & Ibáñez, A. (2022).
Multi-feature computational framework for combined
signatures of dementia in underrepresented settings.
Journal of Neural Engineering, 19(4), 046048.
Porsteinsson, A.P., Isaacson, R.S., Knox, S., Sabbagh,
M.N. and Rubino, I. (2021) Diagnosis of early
alzheimer’s disease: Clinical practice in 2021. The
Journal of Prevention of Alzheimer's Disease, 8(3),
371-386.
Reuter, M., Schmansky, N.J., Rosas, H.D. and Fischl, B
(2012). Within-subject template estimation for
unbiased longitudinal image analysis. Neuroimage,
61(4), 1402-1418.
The Alzheimer's Disease Prediction Of Longitudinal
Evolution (TADPOLE) Challenge
[https://tadpole.grand-challenge.org/] Accessed:
20.11.2022.
Trojacanec, K., Kitanovski, I., Dimitrovski, I. and
Loshkovska, S. October. Medical image retrieval for
Alzheimer’s disease using data from multiple time
points. In International Conference on ICT Innovations,
pp. 215-224. Springer, Cham (2015).
Trojacanec, K., Kalajdziski, S., Kitanovski, I., Dimitrovski,
I., Loshkovska, S. and Alzheimer’s Disease
Neuroimaging Initiative. Image Retrieval for
Alzheimer’s Disease Based on Brain Atrophy Pattern.
In International Conference on ICT Innovations, pp.
165-175. Springer, Cham (2017).
Trojachanec, K., Kitanovski, I., Dimitrovski, I. and
Loshkovska, S. Longitudinal brain MRI retrieval for
Alzheimer's disease using different temporal
information. IEEE Access, 6, 9703-9712 (2017).
Van Dyck, C. H., Nygaard, H. B., Chen, K., Donohue, M.
C., Raman, R., Rissman, R. A., ... & Strittmatter, S. M.
(2019). Effect of AZD0530 on cerebral metabolic
decline in Alzheimer disease: a randomized clinical
trial. JAMA neurology, 76(10), 1219-1229.
Vinutha, N., Sandeep, S., Kulkarni, A. N., Shenoy, P. D., &
Venugopal, K. R. (2019, March). A Texture based
Image Retrieval for Different Stages of Alzheimer’s
Disease. In 2019 IEEE 5th International Conference for
Convergence in Technology (I2CT) (pp. 1-5). IEEE.
Weber, C. J., Carrillo, M. C., Jagust, W., Jack Jr, C. R.,
Shaw, L. M., Trojanowski, J. Q., ... & Weiner, M. W.
(2021). The Worldwide Alzheimer's Disease
Neuroimaging Initiative: ADNI‐3 updates and global
perspectives. Alzheimer's & Dementia: Translational
Research & Clinical Interventions, 7(1), e12226.
Jack Jr, C. R., Knopman, D. S., Jagust, W. J., Petersen, R.
C., Weiner, M. W., Aisen, P. S., ... & Trojanowski, J.
Q. (2013). Update on hypothetical model of
Alzheimer’s disease biomarkers. Lancet neurology,
12(2), 207.