Greenfield, S., Apolone, G., McNeil, B. J., & Cleary, P. D.
(1993). The importance of co-existent disease in the
occurrence of postoperative complications and one-
year recovery in patients undergoing total hip
replacement: comorbidity and outcomes after hip
replacement. Medical care, 31(2), 141-154.
Goltz, D. E., Ryan, S. P., Howell, C. B., Attarian, D.,
Bolognesi, M. P., & Seyler, T. M. (2019). A weighted
index of Elixhauser comorbidities for predicting 90-day
readmission after total joint arthroplasty. The Journal
of arthroplasty, 34(5), 857-864.
Hameed, T., & Bukhari, S. A. C. (2020). Predicting 30-days
All-cause Hospital Readmissions Considering
Discharge-to-alternate-care-facilities. In HEALTHINF
(pp. 864-873).
Havlik, R. J., Yancik, R., Long, S., Ries, L., & Edwards, B.
(1994). The National Institute on Aging and the
National Cancer Institute SEER collaborative study on
comorbidity and early diagnosis of cancer in the
elderly. Cancer, 74(S7), 2101-2106.
Huggingface, n.d., Huggingface BERT model, available at:
https://huggingface.co/docs/transformers/model_doc/b
ert, [Last accessed: Nov 12, 2022]
Johnson, A. E., Pollard, T. J., Shen, L., Lehman, L. W. H.,
Feng, M., Ghassemi, M., ... & Mark, R. G. (2016).
MIMIC-III, a freely accessible critical care database.
Scientific data, 3(1), 1-9.
Johnson, A. E., Pollard, & Mark, R. G. (2019). MIMIC-III
Clinical Database Demo (version 1.4). PhysioNet.
http://doi.org/10.13026/C2HM2Q.
Le, N., Wiley, M., Loza, A., Hristidis, V., & El-Kareh, R.
(2020). Prediction of Medical Concepts in Electronic
Health Records: Similar Patient Analysis. JMIR
Medical Informatics, 8(7), e16008. https://doi.org/
10.2196/16008
Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., &
Kang, J. (2020). BioBERT: a pre-trained biomedical
language representation model for biomedical text
mining. Bioinformatics, 36(4), 1234-1240.
Menendez, M. E., Neuhaus, V., van Dijk, C. N., & Ring, D.
(2014). The Elixhauser comorbidity method
outperforms the Charlson index in predicting inpatient
death after orthopaedic surgery. Clinical Orthopaedics
and Related Research®, 472(9), 2878-2886.
Moore, B. J., White, S., Washington, R., Coenen, N., &
Elixhauser, A. (2017). Identifying increased risk of
readmission and in-hospital mortality using hospital
administrative data. Medical care, 55(7), 698-705.
Mukherjee, B., Ou, H. T., Wang, F., & Erickson, S. R.
(2011). A new comorbidity index: the health-related
quality of life comorbidity index. Journal of clinical
epidemiology, 64(3), 309-319.
Piccirillo, J. F., Tierney, R. M., Costas, I., Grove, L., &
Spitznagel Jr, E. L. (2004). Prognostic importance of
comorbidity in a hospital-based cancer registry. Jama,
291(20), 2441-2447.
Quan, H., Sundararajan, V., Halfon, P., Fong, A., Burnand,
B., Luthi, J. C., & Ghali, W. A. (2005). Coding
algorithms for defining comorbidities in ICD-9-CM
and ICD-10 administrative data. Medical care, 1130-
1139.
Quan, H., Li, B., Couris, C. M., Fushimi, K., Graham, P.,
Hider, P., & Sundararajan, V. (2011). Updating and
validating the Charlson comorbidity index and score for
risk adjustment in hospital discharge abstracts using
data from 6 countries. American journal of
epidemiology, 173(6), 676-682.
Panchendrarajan, R., & Amaresan, A. (2018). Bidirectional
LSTM-CRF for named entity recognition. In
Proceedings of the 32nd Pacific Asia Conference on
Language, Information and Computation.
Sharabiani, M. T., Aylin, P., & Bottle, A. (2012).
Systematic review of comorbidity indices for
administrative data. Medical care, 1109-1118.
Sharma, N., Schwendimann, R., Endrich, O., Ausserhofer,
D., & Simon, M. (2021). Comparing Charlson and
Elixhauser comorbidity indices with different
weightings to predict in-hospital mortality: an analysis
of national inpatient data. BMC health services
research, 21(1), 1-10.
Soomro, P. D., Kumar, S., Shaikh, A. A., & Raj, H. (2017).
Bio-NER: biomedical named entity recognition using
rule-based and statistical learners. International
Journal of Advanced Computer Science and
Applications, 8(12).
Sung, S. F., Chen, C. H., Pan, R. C., Hu, Y. H., & Jeng, J.
S. (2021). Natural Language Processing Enhances
Prediction of Functional Outcome After Acute
Ischemic Stroke. Journal of the American Heart
Association, 10(24), e023486. https://doi.org/10.1161/
JAHA.121.023486
Tome Eftimov, Barbara Koroušić Seljak, and Peter
Korošec. “A rule-based named-entity recognition
method for knowledge extraction of evidence-based
dietary recommendations”. In: PloS one 12.6 (2017),
e0179488
Vafajoo, A., Salarian, R., & Rabiee, N. (2018).
Biofunctionalized microbead arrays for early diagnosis
of breast cancer. Biomedical Physics & Engineering
Express, 4(6), 065028.
Valderas, J. M., Starfield, B., Sibbald, B., Salisbury, C., &
Roland, M. (2009). Defining comorbidity: implications
for understanding health and health services. The
Annals of Family Medicine, 7(4), 357-363.
van Walraven, C., Austin, P. C., Jennings, A., Quan, H., &
Forster, A. J. (2009). A modification of the Elixhauser
comorbidity measures into a point system for hospital
death using administrative data. Medical care, 626-633.
Von Korff, M., Wagner, E. H., & Saunders, K. (1992). A
chronic disease score from automated pharmacy data.
Journal of clinical epidemiology, 45(2), 197-203.
Wang, J., Deng, H., Liu, B., Hu, A., Liang, J., Fan, L.,
Zheng, X., Wang, T., & Lei, J. (2020). Systematic
Evaluation of Research Progress on Natural Language
Processing in Medicine Over the Past 20 Years:
Bibliometric Study on PubMed. Journal of medical
Internet research, 22(1), e16816.
https://doi.org/10.2196/16816
Wolff, J. L., Starfield, B., & Anderson, G. (2002).
Prevalence, expenditures, and complications of
multiple chronic conditions in the elderly. Archives of
internal medicine, 162(20), 2269-2276.