include, but are not limited to, virtual machine con-
solidation (Varasteh and Goudarzi, 2017) and cloud
service composition (Vakili and Navimipour, 2017)
based on heuristic or meta-heuristic algorithms, cloud
security enhancement via machine learning (Nassif
et al., 2021). DRL implementations of HPO for such
problems are then to be compared against the tra-
ditional HPO approaches (Yang and Shami, 2020;
Huang et al., 2020) in order to determine the advan-
tages and disadvantages of applying one or another
in the cloud operations-related HPO problems. At
the same time, it would be prudent to investigate ap-
plying a tuning technique to the DRL approach used
for HPO itself to increase training efficiency in look-
ing for optimal deep neural network architecture, and
hyper-parameters (Wang et al., 2021).
REFERENCES
Agrawal, T. (2021). Hyperparameter Optimization in Ma-
chine Learning. Apress, Berkeley, CA.
Alves, J. C. and Mateus, G. R. (2020). Deep reinforcement
learning and optimization approach for multi-echelon
supply chain with uncertain demands. In Lalla-Ruiz,
E., Mes, M., and Voss, S., editors, Computational Lo-
gistics, volume 12433 of Lecture Notes in Computer
Science, pages 584–599. Springer, Cham.
Arulkumaran, K., Deisenroth, M. P., Brundage, M., and
Bharath, A. A. (2017). Deep reinforcement learning:
A brief survey. IEEE Signal Processing Magazine,
34(6):26–38.
Asadulaev, A., Kuznetsov, I., Stein, G., and Filchenkov, A.
(2020). Exploring and exploiting conditioning of re-
inforcement learning agents. IEEE Access, 8:211951–
211960.
de Santiago J
´
unior, V. A.,
¨
Ozcan, E., and de Carvalho,
V. R. (2020). Hyper-heuristics based on reinforcement
learning, balanced heuristic selection and group deci-
sion acceptance. Applied Soft Computing, 97:106760.
Dong, X., Shen, J., Wang, W., Shao, L., Ling, H., and
Porikli, F. (2021). Dynamical hyperparameter opti-
mization via deep reinforcement learning in tracking.
IEEE transactions on pattern analysis and machine
intelligence, 43(5):1515–1529.
Eryoldas¸, Y. and Durmus¸oglu, A. (2022). A literature sur-
vey on offline automatic algorithm configuration. Ap-
plied Sciences, 12(13):6316.
He, Y., Ma, W., and Zhang, J. (2016). The parame-
ters selection of pso algorithm influencing on perfor-
mance of fault diagnosis. MATEC Web of Confer-
ences, 63:02019.
Huang, C., Li, Y., and Yao, X. (2020). A survey of
automatic parameter tuning methods for metaheuris-
tics. IEEE Transactions on Evolutionary Computa-
tion, 24(2):201–216.
LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learn-
ing. Nature, 521(7553):436–444.
Liao, T., Molina, D., and St
¨
utzle, T. (2015). Performance
evaluation of automatically tuned continuous optimiz-
ers on different benchmark sets. Applied Soft Comput-
ing, 27:490–503.
Lindstah, S. and Lan, X. (2020). Reinforcement learn-
ing with imitation for cavity filter tuning. In 2020
IEEE/ASME International Conference on Advanced
Intelligent Mechatronics (AIM), pages 1335–1340,
[Piscataway, NJ]. IEEE.
Liu, X., Wu, J., and Chen, S. (12/14/2020 - 12/16/2020). Ef-
ficient hyperparameters optimization through model-
based reinforcement learning and meta-learning. In
2020 IEEE 22nd International Conference on High
Performance Computing and Communications; IEEE
18th International Conference on Smart City; IEEE
6th International Conference on Data Science and
Systems (HPCC/SmartCity/DSS), pages 1036–1041.
IEEE.
Mantovani, R. G., Horv
´
ath, T., Cerri, R., Vanschoren, J.,
and Carvalho, A. C. d. (2016). Hyper-parameter
tuning of a decision tree induction algorithm. In
2016 5th Brazilian Conference on Intelligent Systems
(BRACIS), pages 37–42.
Marchesini, E., Corsi, D., Benfatti, A., Farinelli, A., and
Fiorini, P. (2019). Double deep q-network for trajec-
tory generation of a commercial 7dof redundant ma-
nipulator. In 2019 Third IEEE International Confer-
ence on Robotic Computing (IRC), pages 421–422.
Mills, K. G., Han, F. X., Salameh, M., Changiz Rezaei,
S. S., Kong, L., Lu, W., Lian, S., Jui, S., and Niu,
D. (2021). L2nas: Learning to optimize neural archi-
tectures via continuous-action reinforcement learning.
In Proceedings of the 30th ACM International Con-
ference on Information & Knowledge Management,
CIKM ’21, page 1284–1293, New York, NY, USA.
Association for Computing Machinery.
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fid-
jeland, A. K., Ostrovski, G., et al. (2015). Human-
level control through deep reinforcement learning.
Nature, 518(7540):529–533.
Motz, M., Krauß, J., and Schmitt, R. H. (2022). Bench-
marking of hyperparameter optimization techniques
for machine learning applications in production. Ad-
vances in Industrial and Manufacturing Engineering,
5:100099.
N. Xu, J. Chang, X. Nie, C. Huo, S. Xiang, and C. Pan
(2022). Ame: Attention and memory enhancement
in hyper-parameter optimization. In 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 480–489.
Nassif, A. B., Talib, M. A., Nasir, Q., Albadani, H., and
Dakalbab, F. M. (2021). Machine learning for cloud
security: A systematic review. IEEE Access, 9:20717–
20735.
P. Neary (2018). Automatic hyperparameter tuning in deep
convolutional neural networks using asynchronous re-
inforcement learning. In 2018 IEEE International
Conference on Cognitive Computing (ICCC), pages
73–77.
CLOSER 2023 - 13th International Conference on Cloud Computing and Services Science
242