Table 1: Optimized parameters of the membership functions of the input and the output of the fuzzy inference system.
Optimized parameters for the inputs
SD First input \output Second input \output Third input \output
MF Low Med. High Low Med. High Low Med. High
Params. Loc. Wid. Loc. Wid. Loc. Wid. Loc. Wid. Loc. Wid. Loc. Wid. Loc. Wid. Loc. Wid. Loc. Wid.
Noise 10 31.54 75.30 84.91 11.86 150.12 79.90 89.80 15.68 179.98 44.58 198.85 11.72 11.85 12.13 101.80 67.30 160.67 48.00
Noise 20 49.47 15.55 113.18 25.97 191.86 15.38 69.58 5.79 149.80 98.76 150.58 12.99 60.85 73.64 117.51 35.60 195.31 36.54
Noise 30 68.89 91.65 136.88 14.38 154.47 18.10 11.96 67.85 153.51 25.49 168.22 11.97 53.66 92.86 100.82 32.59 196.52 63.81
Optimized parameters for the output
Noise 10 0.10 0.07 0.30 0.08 0.60 0.94 0.10 0.01 0.17 0.25 0.97 0.20 0.03 0.15 0.91 0.01 0.95 0.07
Noise 20 0.03 0.06 0.26 0.57 0.33 0.69 0.02 0.02 0.03 0.14 0.46 0.04 0.23 0.07 0.95 0.33 0.97 0.43
Noise 30 0.06 0.03 0.16 0.94 0.92 0.77 0.06 0.01 0.06 0.47 0.67 0.41 0.30 0.08 0.87 0.18 0.91 0.26
the method and to generalize it for any level of noise
we need to find out a way to adjust one set of param-
eters to be valid for every case in the colour images.
This filtering method could be improved by train-
ing the system from data extracted from the images
themselves.
ACKNOWLEDGEMENTS
S. Morillas acknowledges the support of the research
project PID2019-107790RB-C22, funded by MCIN/
AEI/10.13039/501100011033/
REFERENCES
Abualigah, L. M. Q. and Hanandeh, E. S. (2015). Applying
genetic algorithms to information retrieval using vec-
tor space model. International Journal of Computer
Science, Engineering and Applications (IJCSEA) Vol,
5.
Casillas, J., Cord
´
on, O., Herrera, F., and Magdalena, L.
(2003). Interpretability improvements to find the bal-
ance interpretability-accuracy in fuzzy modeling: an
overview. Interpretability issues in fuzzy modeling,
pages 3–22.
Dabov, K., Foi, A., Katkovnik, V., and Egiazarian, K.
(2007). Color image denoising via sparse 3d collabo-
rative filtering with grouping constraint in luminance-
chrominance space. In 2007 IEEE International Con-
ference on Image Processing, volume 1, pages I–313.
IEEE.
Dillon, W. R. and Goldstein, M. (1984). Multivariate anal-
ysis: Methods and applications. New York (NY): Wi-
ley, 1984.
Fairchild, M. D. and Johnson, G. M. (2004). icam frame-
work for image appearance, differences, and quality.
Journal of Electronic Imaging, 13(1):126–138.
Gre
ˇ
cova, S. and Morillas, S. (2016). Perceptual similarity
between color images using fuzzy metrics. Journal
of Visual Communication and Image Representation,
34:230–235.
Hong, N. M. and Thanh, N. C. (2020). Distance-based mean
filter for image denoising. In Proceedings of the 4th
International Conference on Machine Learning and
Soft Computing.
Latorre-Carmona, P., Mi
˜
nana, J.-J., and Morillas, S. (2020).
Colour image denoising by eigenvector analysis of
neighbourhood colour samples. Signal, Image and
Video Processing, 14(3):483–490.
Lukac, R., Plataniotis, K. N., Smolka, B., and Venet-
sanopoulos, A. N. (2005). cdna microarray image pro-
cessing using fuzzy vector filtering framework. Fuzzy
Sets and Systems, 152(1):17–35.
Mendel, J. M. (1995). Fuzzy logic systems for engineering:
a tutorial. Proceedings of the IEEE, 83(3):345–377.
Moallem, P., Mousavi, B., and Naghibzadeh, S. S. (2015).
Fuzzy inference system optimized by genetic algo-
rithm for robust face and pose detection. Int. J. Artif.
Intell, 13(2):73–88.
Nov
´
ak, V., Perfilieva, I., and Mockor, J. (2012). Mathemat-
ical principles of fuzzy logic, volume 517. Springer
Science & Business Media.
P
´
erez-Benito, C., Jord
´
an, C., Conejero, J. A., and Morillas,
S. (2020). Graphs based methods for simultaneous
smoothing and sharpening. MethodsX, 7:100819.
Plataniotis, K. N. and Venetsanopoulos, A. N. (2000).
Companion image processing software. In Color
Image Processing and Applications, pages 349–352.
Springer.
Qidwai, U. and Chen, C.-h. (2009). Digital image process-
ing: an algorithmic approach with MATLAB. Chap-
man and Hall/CRC.
Schulte, S., De Witte, V., and Kerre, E. E. (2007a). A fuzzy
noise reduction method for color images. IEEE Trans-
actions on image Processing, 16(5):1425–1436.
Schulte, S., Witte, V. D., Nachtegael, M., M
´
elange, T., and
Kerre, E. E. (2007b). A new fuzzy additive noise re-
duction method. In International Conference Image
Analysis and Recognition, pages 12–23. Springer.
Shen, Y. and Barner, K. E. (2004). Fuzzy vector median-
based surface smoothing. IEEE Transactions on Visu-
alization and Computer Graphics, 10(3):252–265.
Tomasi, C. and Manduchi, R. (1998). Bilateral filtering for
gray and color images. In Sixth international confer-
ence on computer vision (IEEE Cat. No. 98CH36271),
pages 839–846. IEEE.
Van De Ville, D., Nachtegael, M., Van der Weken, D.,
Kerre, E. E., Philips, W., and Lemahieu, I. (2003).
Noise reduction by fuzzy image filtering. IEEE trans-
actions on fuzzy systems, 11(4):429–436.
Zadeh, L. A. (1965). Fuzzy sets. Information and control,
8(3):338–353.
Fuzzy Inference System in a Local Eigenvector Based Color Image Smoothing Framework
147