REFERENCES
Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H.
(2006). Greedy layer-wise training of deep networks.
Advances in neural information processing systems,
19.
Bishop, C. M. and Nasrabadi, N. M. (2006). Pattern recog-
nition and machine learning, volume 4. Springer.
Cai, D., He, X., Wang, X., Bao, H., and Han, J. (2009).
Locality preserving nonnegative matrix factorization.
In Twenty-first international joint conference on arti-
ficial intelligence.
Caron, M., Bojanowski, P., Joulin, A., and Douze, M.
(2018). Deep clustering for unsupervised learning of
visual features. In Proceedings of the European con-
ference on computer vision (ECCV), pages 132–149.
Chang, J., Guo, Y., Wang, L., Meng, G., Xiang, S., and
Pan, C. (2019). Deep discriminative clustering analy-
sis. arXiv preprint arXiv:1905.01681.
Chang, J., Meng, G., Wang, L., Xiang, S., and Pan, C.
(2018). Deep self-evolution clustering. IEEE trans-
actions on pattern analysis and machine intelligence,
42(4):809–823.
Chang, J., Wang, L., Meng, G., Xiang, S., and Pan, C.
(2017). Deep adaptive image clustering. In Proceed-
ings of the IEEE international conference on com-
puter vision, pages 5879–5887.
Coates, A., Ng, A., and Lee, H. (2011). An analy-
sis of single-layer networks in unsupervised feature
learning. In Proceedings of the fourteenth interna-
tional conference on artificial intelligence and statis-
tics, pages 215–223. JMLR Workshop and Confer-
ence Proceedings.
De la Torre, F. and Kanade, T. (2006). Discriminative clus-
ter analysis. In Proceedings of the 23rd international
conference on Machine learning, pages 241–248.
Franti, P., Virmajoki, O., and Hautamaki, V. (2006). Fast
agglomerative clustering using a k-nearest neighbor
graph. IEEE transactions on pattern analysis and ma-
chine intelligence, 28(11):1875–1881.
Huang, J., Gong, S., and Zhu, X. (2020). Deep semantic
clustering by partition confidence maximisation. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 8849–
8858.
Hubert, L. and Arabie, P. (1985). Comparing partitions.
Journal of classification, 2(1):193–218.
Ji, X., Henriques, J. F., and Vedaldi, A. (2019). Invariant
information clustering for unsupervised image clas-
sification and segmentation. In Proceedings of the
IEEE/CVF International Conference on Computer Vi-
sion, pages 9865–9874.
Jiang, Z., Zheng, Y., Tan, H., Tang, B., and Zhou, H.
(2016). Variational deep embedding: An unsuper-
vised and generative approach to clustering. arXiv
preprint arXiv:1611.05148.
Kingma, D. P. and Welling, M. (2013). Auto-encoding vari-
ational bayes. arXiv preprint arXiv:1312.6114.
Krizhevsky, A., Nair, V., and Hinton, G. (2010a). Cifar-10
(canadian institute for advanced research).
Krizhevsky, A., Nair, V., and Hinton, G. (2010b). Cifar-100
(canadian institute for advanced research).
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). Im-
agenet classification with deep convolutional neural
networks. Communications of the ACM, 60(6):84–90.
Li, F., Qiao, H., and Zhang, B. (2018). Discrimina-
tively boosted image clustering with fully convolu-
tional auto-encoders. Pattern Recognition, 83:161–
173.
Li, T. and Ding, C. (2006). The relationships among various
nonnegative matrix factorization methods for cluster-
ing. In Sixth International Conference on Data Mining
(ICDM’06), pages 362–371. IEEE.
Li, Y., Hu, P., Liu, Z., Peng, D., Zhou, J. T., and Peng,
X. (2021). Contrastive clustering. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 35, pages 8547–8555.
MacQueen, J. (1967). Classification and analysis of mul-
tivariate observations. In 5th Berkeley Symp. Math.
Statist. Probability, pages 281–297.
Ng, A., Jordan, M., and Weiss, Y. (2001). On spectral clus-
tering: Analysis and an algorithm. Advances in neural
information processing systems, 14.
Niu, C., Shan, H., and Wang, G. (2022). Spice: Semantic
pseudo-labeling for image clustering. IEEE Transac-
tions on Image Processing, 31:7264–7278.
Niu, C., Zhang, J., Wang, G., and Liang, J. (2020). Gatclus-
ter: Self-supervised gaussian-attention network for
image clustering. In European Conference on Com-
puter Vision, pages 735–751. Springer.
Ortis, A., Farinella, G. M., D’Amico, V., Addesso, L., Tor-
risi, G., and Battiato, S. (2017). Organizing egocentric
videos of daily living activities. Pattern Recognition,
72:207–218.
Park, S., Han, S., Kim, S., Kim, D., Park, S., Hong, S.,
and Cha, M. (2021). Improving unsupervised image
clustering with robust learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 12278–12287.
Radford, A., Metz, L., and Chintala, S. (2015). Unsu-
pervised representation learning with deep convolu-
tional generative adversarial networks. arXiv preprint
arXiv:1511.06434.
Strehl, A. and Ghosh, J. (2002). Cluster ensembles—
a knowledge reuse framework for combining multi-
ple partitions. Journal of machine learning research,
3(Dec):583–617.
Tao, Y., Takagi, K., and Nakata, K. (2021). Clustering-
friendly representation learning via instance discrim-
ination and feature decorrelation. arXiv preprint
arXiv:2106.00131.
Van Gansbeke, W., Vandenhende, S., Georgoulis, S., Proes-
mans, M., and Van Gool, L. (2020). Scan: Learning
to classify images without labels. In European confer-
ence on computer vision, pages 268–285. Springer.
Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Man-
zagol, P.-A., and Bottou, L. (2010). Stacked denois-
ing autoencoders: Learning useful representations in a
deep network with a local denoising criterion. Journal
of machine learning research, 11(12).
IMPROVE 2023 - 3rd International Conference on Image Processing and Vision Engineering
162