ACKNOWLEDGEMENTS
This work has been partially supported by: (i) the
National Center for Sustainable Mobility
MOST/Spoke10, funded by the Italian Ministry of
University and Research, in the framework of the
National Recovery and Resilience Plan; (ii) the
PRA_2022_101 project “Decision Support Systems
for territorial networks for managing ecosystem
services”, funded by the University of Pisa; (iii) the
Ministry of University and Research (MUR) as part
of the PON 2014-2020 “Research and Innovation"
resources – Green/Innovation Action – DM MUR
1061/2022"; (iv) the Italian Ministry of University
and Research (MUR), in the framework of the
"Reasoning" project, PRIN 2020 LS Programme,
Project number 2493 04-11-2021; (v) the Italian
Ministry of Education and Research (MIUR) in the
framework of the FoReLab project (Departments of
Excellence).
REFERENCES
Botha, E. J., Anstee, J. M., Sagar, S., Lehmann, E.,
Medeiros, T. A. (2020). Classification of Australian
waterbodies across a wide range of optical water types.
Remote Sensing, 12(18), 3018.
Carreño-Conde, F., & De Mata Muñoz, M. (2019). Flood
monitoring based on the study of Sentinel-1 SAR
images: The Ebro River case study. Water, 11(12),
2454.
Confederación Hidrográfica del Júcar. (2019). Plan
Hidrológico de la Demarcación Hidrográfica del Júcar.
Revisión de tercer ciclo (2021-2027). https://www.chj.
es/es-es/medioambiente/planificacionhidrologica/Pagi
nas/ PHC-2021-2027-Indice.aspx
Filippucci, P., Brocca, L., Bonafoni, S., Saltalippi, C.,
Wagner, W., & Tarpanelli, A. (2022). Sentinel-2 high-
resolution data for river discharge monitoring. Remote
Sensing of Environment, 281, 113255.
Frappart, F., Zeiger, P., Betbeder, J., Gond, V., Bellot, R.,
Baghdadi, N., et al. (2021). Automatic detection of
inland water bodies along altimetry tracks for
estimating surface water storage variations in the
Congo Basin. Remote Sensing, 13(19), 3804.
Galatolo F. (2023), GitHub repository, Gistam203,
https://github.com/galatolofederico/gistam2023.
Jiang, C., Zhang, H., Wang, C., Ge, J., & Wu, F. (2022).
Water Surface Mapping from Sentinel-1 Imagery
Based on Attention-UNet3+: A Case Study of Poyang
Lake Region. Remote Sensing, 14(19), 4708.
Macian-Sorribes H., Pulido-Velazquez M., and Tilmant A.
(2015) Definition of efficient scarcity-based water
pricing policies through stochastic programming.
Hydrol. Earth Syst. Sci., 19, 3925–3935, 2015
www.hydrol-earth-syst-sci.net/19/3925/2015
doi:10.5194/hess-19-3925-2015
Masson-Delmotte, V., Zhai, P., Chen, Y., Goldfarb, L.,
Gomis, M. I., Matthews, J. B. R., Berger, S., Huang,
M., Yelekçi, O., Yu, R., Zhou, B., Lonnoy, E.,
Maycock, T. K., Waterfield, T., Leitzell, K., and Caud,
N. (2021). Summary for Policymakers. In Climate
Change 2021: The Physical Science Basis. Contribution
of Working Group I to the Sixth Assessment Report of
the Intergovernmental Panel on Climate Change. In
Press. www.ipcc.ch
MedECC (2020). Climate and Environmental Change in the
Mediterranean Basin – Current Situation and Risks for
the Future. First Mediterranean Assessment Report,
Cramer, W., Guiot, J., Marini, K. eds., Union for the
Mediterranean, Plan Bleu , UNEP/MAP, Marseille,
France, 632 pp. ISBN: 978-2-95774146-0-1. DOI
10.5281/zenodo.4768833.
Orlandi, D., Galatolo, F. A., Cimino, M. G., La Rosa, A.,
Pagli, C., Perilli, N. (2022). Enhancing land subsidence
awareness via InSAR data and Deep Transformers. In
2022 IEEE Conference on Cognitive and Computational
Aspects of Situation Management (CogSIMA) (pp. 98-
103). IEEE.
Pompeu J., I. Ruiz, A. Ruano, H. Bendini and M.J. Sanz
(2021) Land use and land cover databases for
Mediterranean landscape analysis at the watershed
scale. BC3 Working Paper Series 2021-01. Basque
Centre for Climate Change (BC3). Leioa, Spain.
Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O. R.,
& Jagersand, M. (2020). U2-Net: Going deeper with
nested U-structure for salient object detection. Pattern
recognition, 106, 107404.
Quirós, E., & Gagnon, A. S. (2020). Validation of flood risk
maps using open source optical and radar satellite
imagery. Transactions in GIS, 24(5), 1208-1226.
Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net:
Convolutional networks for biomedical image
segmentation. In International Conference on Medical
image computing and computer-assisted intervention
(pp. 234-241). Springer, Cham.
Tran, K. H., Menenti, M., Jia, L. (2022). Surface Water
Mapping and Flood Monitoring in the Mekong Delta
Using Sentinel-1 SAR Time Series and Otsu Threshold.
Remote Sensing, 14(22), 5721.
Wang P. (2023), GitHub repository, Implementation of a U-
net complete with efficient attention as well as the latest
research findings, https://github.com/lucidrains/x-unet.