ing of the limitations of the approach (e.g. with re-
spect to scalability). Moreover, various functional im-
provements are to be done, like the integration of Ku-
bernetes StatefulSets to provide storage services and
the integration of role-based access control (RBAC)
for the applications. RBAC can be realized, for ex-
ample, using the identity and access management so-
lution Keycloak (Red Hat, 2014).
ACKNOWLEDGMENT
This work was supported by the research and devel-
opment project ”AI Marketplace” which is funded by
the Federal Ministry for Economic Affairs and Cli-
mate Action in Germany.
REFERENCES
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., et al.
(2015). TensorFlow: Large-scale machine learning on
heterogeneous systems.
BentoML (2019). BentoML. https://www.bentoml.com
(accessed 9 December 2022).
Bernijazov, R., Dicks, A., Dumitrescu, R., Foullois, M.,
Hanselle, J. M., H
¨
ullermeier, E., Karakaya, G.,
K
¨
odding, P., Lohweg, V., Malatyali, M., and et al.
(2021). A meta-review on artificial intelligence in
product creation. In Proceedings of the 30th Inter-
national Joint Conference on Artificial Intelligence.
Buoyant (2016). Linkerd. https://linkerd.io (accessed 28
November 2022).
Cer, D., Yang, Y., Kong, S.-y., Hua, N., et al. (2018). Uni-
versal sentence encoder.
Christie, T. et al. (2017). Uvicorn. https://www.uvicorn.org
(accessed 28 November 2022).
CNCF (2018a). Cloud Native Landscape. https://landscape.
cncf.io (accessed 28 November 2022).
CNCF (2018b). Trail Map. https://github.com/cncf/trail
map (accessed 28 November 2022).
Dragoni, N., Giallorenzo, S., Lafuente, A. L., Mazzara, M.,
Montesi, F., Mustafin, R., and Safina, L. (2016). Mi-
croservices: yesterday, today, and tomorrow.
Dumitrescu, R., Riedel, O., Gausemeier, J., Albers, A., and
(Eds.), R. (2021). Engineering in germany – status
quo in business and science.
Gausemeier, J., Dumitrescu, R., Echterfeld, J., Pf
¨
ander, T.,
Steffen, D., and Thielemann, F. (2019). Innovationen
f
¨
ur die M
¨
arkte von morgen: Strategische Planung von
Produkten, Dienstleistungen und Gesch
¨
aftsmodellen.
Hanser, M
¨
unchen.
Google (2014). Kubernetes. https://kubernetes.io (accessed
28 November 2022).
Grinberg, M. (2018). Flask Web Development: Develop-
ing Web Applications with Python. O’Reilly Me-
dia, Inc.
Jetstack (2017). cert-manager. https://cert-manager.io (ac-
cessed 28 November 2022).
Karabey Aksakalli, I., C¸ elik, T., Can, A., and Tekinerdogan,
B. (2021). Deployment and communication patterns
in microservice architectures: A systematic literature
review. Journal of Systems and Software, 180.
Kreuzberger, D., K
¨
uhl, N., and Hirschl, S. (2022). Ma-
chine learning operations (mlops): Overview, defini-
tion, and architecture.
Kubeflow Serving Working Group (2021). KServe.
https://kserve.github.io/website (accessed 9 Decem-
ber 2022).
M
¨
akinen, S., Skogstr
¨
om, H., Laaksonen, E., and Mikkonen,
T. (2021). Who needs mlops: What data scientists
seek to accomplish and how can mlops help?
Merkel, D. (2014). Docker: lightweight linux containers for
consistent development and deployment. Linux Jour-
nal.
Microsoft (2002). ASP.NET. https://dotnet.microsoft.com/
en-us/apps/aspnet (accessed 9 January 2023).
Microsoft and Red Hat (2019). KEDA. https://keda.sh (ac-
cessed 28 November 2022).
OpenAPI Initiative (2011). OpenAPI. https://www.open
apis.org (accessed 28 November 2022).
Ram
´
ırez, S. et al. (2018). FastAPI. https://fastapi.tiangolo.
com (accessed 28 November 2022).
Red Hat (2014). Keycloak. https://www.keycloak.org (ac-
cessed 3 March 2023).
Richardson, C. (2018). Microservices Patterns: With exam-
ples in Java. Manning.
Salum, K. and Abd Rozan, M. Z. (2016). Exploring the
challenge impacted smes to adopt cloud erp. Indian
Journal of Science and Technology, 9.
Schauf, T. and Neuburger, R. (2021). Supplementarische
Informationen zum DiDaT Weißbuch, chapter 3.4
Cloudabh
¨
angigkeit von KMU. Nomos.
Schr
¨
ader, E., Bernijazov, R., Foullois, M., Hillebrand, M.,
Kaiser, L., and Dumitrescu, R. (2022). Examples
of ai-based assistance systems in context of model-
based systems engineering. In 2022 IEEE Interna-
tional Symposium on Systems Engineering (ISSE).
Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T.,
Ebner, D., Chaudhary, V., Young, M., and Dennison,
D. (2015). Hidden technical debt in machine learning
systems. NIPS.
Seldon Technologies Ltd. (2018). Seldon Core.
https://www.seldon.io/solutions/open-source-
projects/core (accessed 9 December 2022).
SoundCloud (2012). Prometheus. https://prometheus.io
(accessed 28 November 2022).
Symeonidis, G., Nerantzis, E., Kazakis, A., and Papakostas,
G. A. (2022). Mlops - definitions, tools and chal-
lenges. In 2022 IEEE 12th Annual Computing and
Communication Workshop and Conference (CCWC).
Zhou, Y., Yu, Y., and Ding, B. (2020). Towards mlops: A
case study of ml pipeline platform. In 2020 Interna-
tional Conference on Artificial Intelligence and Com-
puter Engineering (ICAICE). IEEE.
CLOSER 2023 - 13th International Conference on Cloud Computing and Services Science
276