Hawkins, D. M. (1980). Identification of outliers, vol-
ume 11. Springer.
Hochenbaum, J., Vallis, O. S., and Kejariwal, A. (2017).
Automatic anomaly detection in the cloud via statisti-
cal learning. arXiv preprint arXiv:1704.07706.
Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8):1735–1780.
Laptev, N., Amizadeh, S., and Flint, I. (2015). Generic
and scalable framework for automated time-series
anomaly detection. In Proceedings of the 21th ACM
SIGKDD international conference on knowledge dis-
covery and data mining, pages 1939–1947.
Lavin, A. and Ahmad, S. (2015). Evaluating real-time
anomaly detection algorithms–the numenta anomaly
benchmark. In 2015 IEEE 14th international confer-
ence on machine learning and applications (ICMLA),
pages 38–44. IEEE.
Lee, M.-C., Lin, J.-C., and Gan, E. G. (2020a). ReRe: A
lightweight real-time ready-to-go anomaly detection
approach for time series. In 2020 IEEE 44th Annual
Computers, Software, and Applications Conference
(COMPSAC), pages 322–327. IEEE. arXiv preprint
arXiv:2004.02319. The updated version of the ReRe
algorithm from arXiv was used in this RePAD2 paper.
Lee, M.-C., Lin, J.-C., and Gran, E. G. (2020b). RePAD:
real-time proactive anomaly detection for time series.
In Advanced Information Networking and Applica-
tions: Proceedings of the 34th International Confer-
ence on Advanced Information Networking and Ap-
plications (AINA-2020), pages 1291–1302. Springer.
arXiv preprint arXiv:2001.08922. The updated ver-
sion of the RePAD algorithm from arXiv was used in
this RePAD2 paper.
Lee, M.-C., Lin, J.-C., and Gran, E. G. (2021a). How far
should we look back to achieve effective real-time
time-series anomaly detection? In Advanced Infor-
mation Networking and Applications: Proceedings of
the 35th International Conference on Advanced In-
formation Networking and Applications (AINA-2021),
Volume 1, pages 136–148. Springer. arXiv preprint
arXiv:2102.06560.
Lee, M.-C., Lin, J.-C., and Gran, E. G. (2021b). SALAD:
Self-adaptive lightweight anomaly detection for real-
time recurrent time series. In 2021 IEEE 45th An-
nual Computers, Software, and Applications Confer-
ence (COMPSAC), pages 344–349. IEEE.
Lee, T. J., Gottschlich, J., Tatbul, N., Metcalf, E., and
Zdonik, S. (2018). Greenhouse: A zero-positive ma-
chine learning system for time-series anomaly detec-
tion. arXiv preprint arXiv:1801.03168.
LinkedIn (2018). linkedin/luminol [online code reposi-
tory]. https://github.com/linkedin/luminol. [Online;
accessed 24-February-2023].
NAB (2015). numenta/nab [online code repository]. url=
{https://github.com/numenta/NAB}. [Online; ac-
cessed 24-February-2023].
Ren, H., Xu, B., Wang, Y., Yi, C., Huang, C., Kou, X., Xing,
T., Yang, M., Tong, J., and Zhang, Q. (2019). Time-
series anomaly detection service at microsoft. In Pro-
ceedings of the 25th ACM SIGKDD international con-
ference on knowledge discovery & data mining, pages
3009–3017.
Schneider, J., Wenig, P., and Papenbrock, T. (2021). Dis-
tributed detection of sequential anomalies in univari-
ate time series. The VLDB Journal, 30(4):579–602.
Siffer, A., Fouque, P.-A., Termier, A., and Largouet, C.
(2017). Anomaly detection in streams with ex-
treme value theory. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 1067–1075.
Staudemeyer, R. C. (2015). Applying long short-term mem-
ory recurrent neural networks to intrusion detection.
South African Computer Journal, 56(1):136–154.
Twitter (2015). Twitter/anomalydetection [online
code repository]. https://github.com/twitter/
AnomalyDetection. [Online; accessed 24-February-
2023].
Wu, J., Zeng, W., and Yan, F. (2018). Hierarchical tem-
poral memory method for time-series-based anomaly
detection. Neurocomputing, 273:535–546.
Xu, J. and Shelton, C. R. (2010). Intrusion detection using
continuous time bayesian networks. Journal of Artifi-
cial Intelligence Research, 39:745–774.
RePAD2: Real-Time Lightweight Adaptive Anomaly Detection for Open-Ended Time Series
217