Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1,
pages 4171–4186.
Doaa Mohey, E.-D. M. H. (2016). M. Hussein, Analyzing
Scientific Papers Based on Sentiment Analysis, Infor-
mation System Department Faculty of Computers and
Information Cairo University, 10.
Doaa Mohey, E.-D. M. H. (2018). A survey on sentiment
analysis challenges. Journal of King Saud University
- Engineering Sciences, 30(4):330–338.
Du, C.-H., Tsai, M.-F., and Wang, C.-J. (2019). Beyond
word-level to sentence-level sentiment analysis for fi-
nancial reports. In ICASSP 2019 - 2019 IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 1562–1566.
Fernandes, M. B., Valizadeh, N., Alabsi, H. S., Quadri,
S. A., Tesh, R. A., Bucklin, A. A., Sun, H., Jain, A.,
Brenner, L. N., Ye, E., Ge, W., Collens, S. I., Lin, S.,
Das, S., Robbins, G. K., Zafar, S. F., Mukerji, S. S.,
and Brandon Westover, M. (2023). Classification of
neurologic outcomes from medical notes using natu-
ral language processing. Expert Systems with Appli-
cations, 214:119171.
Fischbach, J., Frattini, J., Vogelsang, A., Mendez, D., Un-
terkalmsteiner, M., Wehrle, A., Henao, P. R., Yousefi,
P., Juricic, T., Radduenz, J., and Wiecher, C. (2023).
Automatic creation of acceptance tests by extracting
conditionals from requirements: Nlp approach and
case study. Journal of Systems and Software, 197.
Cited by: 0.
Haddi, E., “Sentiment Analysis: Text Pre-Processing, R. V.,
and Domains, C. (2015). ” pp. 1–133.
HuffPost (2022). News Category Dataset.
Li, W., Gao, S., Zhou, H., Huang, Z., Zhang, K., and Li,
W. (2019). The automatic text classification method
based on bert and feature union. volume 2019-
December, page 774 – 777. Cited by: 25.
Mahmoud, A. M., Desuky, A. S., Eid, H. F., and Ali, H. A.
(2023). Node classification with graph neural network
based centrality measures and feature selection. In-
ternational Journal of Electrical and Computer Engi-
neering, 13(2):2114 – 2122. Cited by: 0; All Open
Access, Gold Open Access.
Maree, M. (2021). “semantics-based key concepts identi-
fication for documents indexing and retrieval on the
web. ” International Journal of Innovative Comput-
ing and Applications, 12(1):1–12.
Maree, M. and Eleyat, M. (2020). “semantic graph based
term expansion for sentence-level sentiment analysis,
” international journal of computing. 19(4):647–655.
Maree, M., Eleyat, M., Rabayah, S., and Belkhatir, M.
(2023). A hybrid composite features based sentence
level sentiment analyzer. IAES International Journal
of Artificial Intelligence (IJ-AI), 12(1):284.
Marinho, F. P., Rocha, P. A. C., Neto, A. R. R., and Bez-
erra, F. D. V. (2023). Short-term solar irradiance fore-
casting using cnn-1d, lstm, and cnn-lstm deep neural
networks: A case study with the folsom (usa) dataset.
Journal of Solar Energy Engineering, Transactions of
the ASME, 145(4). Cited by: 0.
Me
ˇ
skel
˙
e, D. and Frasincar, F. (2020). Aldonar: A hybrid so-
lution for sentence-level aspect-based sentiment anal-
ysis using a lexicalized domain ontology and a regu-
larized neural attention model. Information Process-
ing & Management, 57(3):102211.
Pak, A. and Paroubek, P. (2010). Twitter as a corpus
for sentiment analysis and opinion mining. In Pro-
ceedings of the Seventh International Conference on
Language Resources and Evaluation (LREC’10), Val-
letta, Malta. European Language Resources Associa-
tion (ELRA).
Prachi, N. N., Habibullah, M., Rafi, M. E. H., Alam, E., and
Khan, R. (2022). Detection of fake news using ma-
chine learning and natural language processing algo-
rithms. Journal of Advances in Information Technol-
ogy, 13(6):652 – 661. Cited by: 0; All Open Access,
Gold Open Access.
Qorib, M., Oladunni, T., Denis, M., Ososanya, E., and
Cotae, P. (2023). Covid-19 vaccine hesitancy: Text
mining, sentiment analysis and machine learning on
COVID-19 vaccination Twitter dataset. Expert Sys-
tems with Applications, 212:118715.
Sabbah, A. F. and Hanani, A. A. (2023). Self-admitted tech-
nical debt classification using natural language pro-
cessing word embeddings. International Journal of
Electrical and Computer Engineering, 13(2):2142 –
2155. Cited by: 0; All Open Access, Gold Open Ac-
cess.
Sabiri, B., Asri, B. E., and Rhanoui, M. (2022a). Impact
of hyperparameters on the generative adversarial net-
works behavior. volume 1, page 428 – 438. Cited by:
0; All Open Access, Hybrid Gold Open Access.
Sabiri, B., Asri, B. E., and Rhanoui, M. (2022b). Mecha-
nism of overfitting avoidance techniques for training
deep neural networks. volume 1, page 418 – 427.
Cited by: 0; All Open Access, Hybrid Gold Open Ac-
cess.
Samuel, J., Ali, G. M. N., Rahman, M. M., Esawi, E., and
Samuel, Y. (2020). Covid-19 public sentiment insights
and machine learning for tweets classification. Infor-
mation (Switzerland), 11(6). Cited by: 193; All Open
Access, Gold Open Access, Green Open Access.
ICEIS 2023 - 25th International Conference on Enterprise Information Systems
582