Geiger, A., Lenz, P., and Urtasun, R. (2012). Are we ready
for autonomous driving? the kitti vision benchmark
suite. In 2012 IEEE Conference on Computer Vision
and Pattern Recognition, pages 3354–3361.
Girshick, R. B. (2015). Fast R-CNN. CoRR,
abs/1504.08083.
Hassan, S. I., Dang, L. M., Mehmood, I., Im, S., Choi, C.,
Kang, J., Park, Y.-S., and Moon, H. (2019). Under-
ground sewer pipe condition assessment based on con-
volutional neural networks. Automation in Construc-
tion, 106:102849.
He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep
into rectifiers: Surpassing human-level performance
on imagenet classification. CoRR, abs/1502.01852.
Hengmeechai, J. (2013). Automated Analysis of Sewer In-
spection Closed Circuit Television Videos Using Im-
age Processing Techniques. PhD thesis, Faculty of
Graduate Studies and Research, University of Regina.
Huynh, P., Ross, R., Martchenko, A., and Devlin, J. (2015).
Anomaly inspection in sewer pipes using stereo vi-
sion. In 2015 IEEE International Conference on
Signal and Image Processing Applications (ICSIPA),
pages 60–64. IEEE.
Ioffe, S. and Szegedy, C. (2015). Batch normalization: Ac-
celerating deep network training by reducing internal
covariate shift. CoRR, abs/1502.03167.
Kingma, D. P. and Ba, J. (2014). Adam: A method for
stochastic optimization. arXiv:1412.6980.
Kumar, S. S., Wang, M., Abraham, D. M., Jahanshahi,
M. R., Iseley, T., and Cheng, J. C. (2020). Deep
learning–based automated detection of sewer defects
in cctv videos. Journal of Computing in Civil Engi-
neering, 34(1):04019047.
Kunzel, J., Werner, T., Eisert, P., and Waschnewski, J.
(2018). Automatic analysis of sewer pipes based on
unrolled monocular fisheye images. In 2018 IEEE
Winter Conference on Applications of Computer Vi-
sion (WACV), pages 2019–2027. IEEE.
Lin, T., Goyal, P., Girshick, R. B., He, K., and Doll
´
ar, P.
(2017). Focal loss for dense object detection. CoRR,
abs/1708.02002.
Lin, T., Maire, M., Belongie, S. J., Bourdev, L. D., Girshick,
R. B., Hays, J., Perona, P., Ramanan, D., Doll
´
ar, P.,
and Zitnick, C. L. (2014). Microsoft COCO: common
objects in context. CoRR, abs/1405.0312.
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.,
Fu, C.-Y., and Berg, A. C. (2016). SSD: Single Shot
MultiBox Detector. arvix, 9905:21–37.
Makar, J. M. (1999). Diagnostic techniques for sewer sys-
tems. Journal of Infrastructure Systems, 5:69–78.
Moselhi, O. and Shehab-Eldeen, T. (1999). Automated de-
tection of surface defects in water and sewer pipes.
Automation in Construction, 8(5):581–588.
M
¨
uller, K. and Fischer, B. (2009). Objective condition as-
sessment of sewer systems. Strategic Asset Manage-
ment of Water Supply and Wastewater Infrastructures.
M
¨
uller, K., Fischer, B., Lehmann, T., Hunger, W., and
Sch
¨
afer, T. (2006). Forschungsprojekt bilderkennung-
ergebnisse der ersten projektphase. B I UmweltBau,
5.
Redmon, J., Divvala, S., Girshick, R., and Farhadi, A.
(2016). You Only Look Once: Unified, Real-Time
Object Detection. arvix. arXiv:1506.02640 [cs] ver-
sion: 5.
Redmon, J. and Farhadi, A. (2018). YOLOv3: An Incre-
mental Improvement. arvix. arXiv:1804.02767 [cs].
Ren, S., He, K., Girshick, R. B., and Sun, J. (2015). Faster
R-CNN: towards real-time object detection with re-
gion proposal networks. CoRR, abs/1506.01497.
Ruder, S. (2016). An overview of gradient descent opti-
mization algorithms. CoRR, abs/1609.04747.
Sinha, S., Karray, F., and Fieguth, P. (1999). Under-
ground pipe cracks classification using image anal-
ysis and neuro-fuzzy algorithm. In Proceedings of
the 1999 IEEE International Symposium on Intelli-
gent Control Intelligent Systems and Semiotics (Cat.
No.99CH37014), pages 399–404.
Sinha, S. K. (2000). Automated underground pipe inspec-
tion using a unified image processing and artificial in-
telligence methodology. University of Waterloo.
Tan, M. and Le, Q. V. (2019). Efficientnet: Rethink-
ing model scaling for convolutional neural networks.
CoRR, abs/1905.11946.
Tan, M., Pang, R., and Le, Q. V. (2020). Effi-
cientDet: Scalable and Efficient Object Detection.
arXiv:1911.09070 [cs, eess] version: 7.
Tung-Ching, S. (2015). Segmentation of crack and open
joint in sewer pipelines based on cctv inspection im-
ages. In 2015 AASRI International Conference on
Circuits and Systems (CAS 2015), pages 263–266. At-
lantis Press.
Wang, C.-Y., Bochkovskiy, A., and Liao, H.-Y. M. (2022a).
Yolov7: Trainable bag-of-freebies sets new state-of-
the-art for real-time object detectors.
Wang, M., Luo, H., and Cheng, J. C. (2021). Towards an
automated condition assessment framework of under-
ground sewer pipes based on closed-circuit television
(cctv) images. Tunnelling and Underground Space
Technology, 110:103840.
Wang, W., Dai, J., Chen, Z., Huang, Z., Li, Z., Zhu, X.,
Hu, X., Lu, T., Lu, L., Li, H., et al. (2022b). In-
ternimage: Exploring large-scale vision foundation
models with deformable convolutions. arXiv preprint
arXiv:2211.05778.
Yang, M.-D. and Su, T.-C. (2008). Automated diagnosis
of sewer pipe defects based on machine learning ap-
proaches. Expert Systems with Applications.
Zhao, Z.-Q., Zheng, P., Xu, S.-T., and Wu, X. (2019). Ob-
ject detection with deep learning: A review. IEEE
Transactions on Neural Networks and Learning Sys-
tems, 30(11):3212–3232.
IMPROVE 2023 - 3rd International Conference on Image Processing and Vision Engineering
198