Data Quality for Machine Learning Tasks. Proceedings
of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 3561–3562.
https://doi.org/10.1145/3394486.3406477
Kennedy, C. J., Bacon, G., Sahn, A., & von Vacano, C.
(2020). Constructing interval variables via faceted
Rasch measurement and multitask deep learning: a
hate speech application. http://arxiv.org/abs/2009.102
77
Kocoń, J., Figas, A., Gruza, M., Puchalska, D.,
Kajdanowicz, T., & Kazienko, P. (2021). Offensive,
aggressive, and hate speech analysis: From data-centric
to human-centered approach. Information Processing
and Management, 58(5). https://doi.org/10.1016/
j.ipm.2021.102643
Lazer, D. M. J., Baum, M. A., Benkler, Y., Berinsky, A. J.,
Greenhill, K. M., Menczer, F., Metzger, M. J., Nyhan,
B., Pennycook, G., Rothschild, D., Schudson, M.,
Sloman, S. A., Sunstein, C. R., Thorson, E. A., Watts,
D. J., & Zittrain, J. L. (2018). The science of fake news:
Addressing fake news requires a multidisciplinary
effort. Science, 359(6380), 1094–1096. https://doi.org/
10.1126/science.aao2998
Madukwe, K., Gao, X., & Xue, B. (2020). In Data We
Trust: A Critical Analysis of Hate Speech Detection
Datasets. 150–161. https://doi.org/10.18653/v1/20
20.alw-1.18
Martínez-Monteagudo, M. C., Delgado, B., Díaz-Herrero,
Á., & García-Fernández, J. M. (2020). Relationship
between suicidal thinking, anxiety, depression and
stress in university students who are victims of
cyberbullying. Psychiatry Research, 286.
https://doi.org/10.1016/j.psychres.2020.112856
Mathew, B., Saha, P., Yimam, S. M., Biemann, C., Goyal,
P., & Mukherjee, A. (2020). HateXplain: A Benchmark
Dataset for Explainable Hate Speech Detection.
http://arxiv.org/abs/2012.10289
Mollas, I., Chrysopoulou, Z., Karlos, S., & Tsoumakas, G.
(2020). ETHOS: an Online Hate Speech Detection
Dataset. https://doi.org/10.1007/s40747-021-00608-2
Nakamura, K., Levy, S., & Wang, W. Y. (2020).
r/Fakeddit: A New Multimodal Benchmark Dataset for
Fine-grained Fake News Detection. https://www.
journalism.org/2019/06/05/many-americans-
Nixon, C. (2014). Current perspectives: the impact of
cyberbullying on adolescent health. Adolescent Health,
Medicine and Therapeutics, 143. https://doi.org/
10.2147/ahmt.s36456
Ognibene, D., & Taibi, D. (2022). Designing Educational
Interventions to Increase Students’ Social Media
Awareness-Experience From the COURAGE Project
https://www.researchgate.net/publication/366595820
Paullada, A., Raji, I. D., Bender, E. M., Denton, E., &
Hanna, A. (2021). Data and its (dis)contents: A survey
of dataset development and use in machine learning
research. In Patterns (Vol. 2, Issue 11). Cell Press.
https://doi.org/10.1016/j.patter.2021.100336
Poletto, F., Basile, V., Sanguinetti, M., Bosco, C., & Patti,
V. (2021). Resources and benchmark corpora for hate
speech detection: a systematic review. In Language
Resources and Evaluation (Vol. 55, Issue 2, pp. 477–
523). Springer Science and Business Media B.V.
https://doi.org/10.1007/s10579-020-09502-8
Qian, J., Bethke, A., Liu, Y., Belding, E., & Wang, W. Y.
(2019). A Benchmark Dataset for Learning to Intervene
in Online Hate Speech. http://arxiv.org/abs/1909.04251
Raponi, S., Khalifa, Z., Oligeri, G., & di Pietro, R. (2022).
Fake News Propagation: A Review of Epidemic
Models, Datasets, and Insights. ACM Trans. Web,
16(3). https://doi.org/10.1145/3522756
Roberto Sanchez Reina, J., Scifo, L., & Lomonaco, F.
(2022). Empirically Investigating Virtual Learning
Companions to Enhance Social Media Literacy.
https://www.researchgate.net/publication/365683043
Sap, M., Card, D., Gabriel, S., Choi, Y., Smith, N. A., &
Allen, P. G. (n.d.). The Risk of Racial Bias in Hate
Speech Detection. Association for Computational
Linguistics. www.figure-eight.com
Shu, K., Mahudeswaran, D., Wang, S., Lee, D., & Liu, H.
(2018). FakeNewsNet: A Data Repository with News
Content, Social Context and Spatialtemporal
Information for Studying Fake News on Social Media.
http://arxiv.org/abs/1809.01286
Shu, K., Mahudeswaran, D., Wang, S., Lee, D., & Liu, H.
(2020). FakeNewsNet: A Data Repository with News
Content, Social Context, and Spatiotemporal
Information for Studying Fake News on Social Media.
Big Data, 8(3), 171–188. https://doi.org/
10.1089/big.2020.0062
Taibi, D., Fulantelli, G., Monteleone, V., Schicchi, D., &
Scifo, L. (2021). An Innovative Platform to Promote
Social Media Literacy in School Contexts. In
Proceeding of ECEL 2021 20th European Conference
on e-Learning, Berlin, Germany.
Tromble, R., Storz, A., & Stockmann, D. (2017). We Don’t
Know What We Don’t Know: When and How the Use
of Twitter’s Public APIs Biases Scientific Inference.
https://ssrn.com/abstract=3079927Electroniccopyavail
ableat:https://ssrn.com/abstract=3079927
Varma, R., Verma, Y., Vijayvargiya, P., & Churi, P. P.
(2021). A systematic survey on deep learning and
machine learning approaches of fake news detection in
the pre- and post-COVID-19 pandemic. In
International Journal of Intelligent Computing and
Cybernetics (Vol. 14, Issue 4, pp. 617–646). Emerald
Group Holdings Ltd. https://doi.org/10.1108/IJICC-04-
2021-0069
Vidgen, B., Thrush, T., Waseem, Z., & Kiela, D. (2021).
Learning from the Worst: Dynamically Generated
Datasets to Improve Online Hate Detection.
https://github.com/bvidgen/
Zhang, X., & Ghorbani, A. A. (2020). An overview of
online fake news: Characterisation, detection, and
discussion. Information Processing and Management,
57(2). https://doi.org/10.1016/j.ipm.2019.03.004
Zheluk, A. A., Anderson, J., & Dineen-griffin, S. (2022).
Adolescent Anxiety and TikTok : An Exploratory Study.
14(December 2021). https://doi.org/10.7759/cureus.3
2530