such as handling freight exchange among each other
in the near distance or to compensate for the outage
of a cloud connection.
ACKNOWLEDGEMENTS
The work presented in this paper represents results
by the Institute for Applied Informatics (InfAI) and
Mercedes-Benz AG on the research project ‘Require-
ments and Application of GAIA-X in the Edge-
Device Automobile’ (GAIA-X 4 AGEDA) that is
partly funded by the German Federal Ministry for
Economic Affairs and Climate Protection (BMWK
19S22004P). The sole responsibility for the content
lies with the authors.
REFERENCES
Abdali, T.-A. N., Hassan, R., Aman, A. H. M., and Nguyen,
Q. N. (2021). Fog Computing Advancement: Con-
cept, Architecture, Applications, Advantages, and
Open Issues. IEEE Access, 9:75961–75980. https:
//doi.org/10.1109/access.2021.3081770.
Ballot, E., Barbarino, S., van Bree, B., Liesa, F.,
Rod Franklin, J., ‘t Hooft, D., Nettstr
¨
ater, A., Pa-
ganelli, P., and A. Tavasszy, L. (2021). Roadmap to
The Physical Internet. http://www.etp-logistics.eu/
wp-content/uploads/2020/11/Roadmap-to-Physica
l-Intenet-Executive-Version Final.pdf, Accessed 25
January 2023.
Eurostat (2021). A fifth of road freight kilometres by empty
vehicle. https://ec.europa.eu/eurostat/web/produc
ts-eurostat-news/-/ddn- 20211210-1, Accessed 25
January 2023.
Eurostat (2022). Modal split of freight transport. https:
//ec.europa.eu/eurostat/databrowser/view/tran hv frm
od/default/table?lang=en, Accessed 25 January 2023.
Fahim, P. B., An, R., Rezaei, J., Pang, Y., Montreuil, B., and
Tavasszy, L. (2021). An information architecture to
enable track-and-trace capability in Physical Internet
ports. Computers in Industry, 129:103443. https://do
i.org/10.1016/j.compind.2021.103443.
Hasan, H. R., Salah, K., Jayaraman, R., Yaqoob, I., and
Omar, M. (2021). Blockchain Architectures for Phys-
ical Internet: A Vision, Features, Requirements, and
Applications. IEEE Network, 35(2):174–181. https:
//doi.org/10.1109/mnet.021.2000442.
ITF (2021). ITF Transport Outlook 2021. OECD. https:
//doi.org/10.1787/16826a30-en.
Kaup, S. and Demircioglu, A. V. (2017). Von der Crowd-
Logistik hin zu einem ganzheitlichen Ansatz hochef-
fizienten Warentransports. Wirtschaftsinformatik &
Management, 9(3):18–27. https://doi.org/10.1007/
s35764-017-0052-z.
Kaup, S., Ludwig, A., and Franczyk, B. (2021). Framework
Artifact for the Road-Based Physical Internet based on
Internet Protocols. https://arxiv.org/abs/2106.08286.
Kaup, S. and Singer, E. (2016). Logistics in 2050: Hitch-
hiking through the Physical Internet. Mercedes-Benz
NeXt – The Innovation Magazine, 01/2016:6–13. http
s://figshare.com/articles/journal contribution/Logistic
s in 2050 Hitch-hiking through the Physical Interne
t/13489563, Accessed 25 January 2023.
Laurent,
´
E. (2020). The European Green Deal: from
growth-strategy to social-ecological transition? So-
cial policy in the European Union: state of play, pages
97–110.
Liesa, F., ‘t Hooft, D., and Ilves, I. (2020). Physical Internet
Roadmap. https://www.etp-logistics.eu/, Accessed 25
January 2023.
Mededjel, M., Belalem, G., and Neki, A. (2021). A cloud-
fog architecture for physical-internet-enabled supply
chain. Supply Chain Forum: An International Jour-
nal, 23(3):307–322. https://doi.org/10.1080/162583
12.2021.1996861.
Montreuil, B. (2012). Physical Internet Manifesto, Version
1.11. 1. https://www.slideshare.net/physical interne
t/physical-internet-manifesto-eng-version-1111-201
21119-15252441, Accessed 25 January 2023.
Mouradian, C., Naboulsi, D., Yangui, S., Glitho, R. H.,
Morrow, M. J., and Polakos, P. A. (2018). A Com-
prehensive Survey on Fog Computing: State-of-the-
Art and Research Challenges. IEEE Communications
Surveys & Tutorials, 20(1):416–464. https://doi.org/
10.1109/comst.2017.2771153.
Osm
´
olski, W., , Voronina, R., Koli
´
nski, A., and and (2019).
Verification of the Possibilities of Applying the Princi-
ples of the Physical in Economic Practice. Logforum,
15(1):7–17. https://doi.org/10.17270/j.log.2019.310.
Tran-Dang, H. and Kim, D.-S. (2018). An Information
Framework for Internet of Things Services in Phys-
ical Internet. IEEE Access, 6:43967–43977. https:
//doi.org/10.1109/access.2018.2864310.
Tran-Dang, H., Krommenacker, N., Charpentier, P., and
Kim, D.-S. (2020). Toward the Internet of Things for
Physical Internet: Perspectives and Challenges. IEEE
Internet of Things Journal, 7(6):4711–4736. https:
//doi.org/10.1109/jiot.2020.2971736.
Wehlitz, R., H
¨
aberlein, D., Zsch
¨
ornig, T., and Franczyk,
B. (2017). A Smart Energy Platform for the Inter-
net of Things – Motivation, Challenges, and Solu-
tion Proposal. In Business Information Systems, pages
271–282. Springer International Publishing. https:
//doi.org/10.1007/978-3-319-59336-4 19.
Wehlitz, R., Jauer, F., R
¨
oßner, I., and Franczyk, B. (2020).
Increasing the Reusability of IoT-aware Business Pro-
cesses. In Position Papers of the 2020 Federated Con-
ference on Computer Science and Information Sys-
tems. PTI. https://doi.org/10.15439/2020f209.
Windolph, J., Wehlitz, R., Zsch
¨
ornig, T., and Franczyk, B.
(2021). Integrating External Data Sources into Inter-
net of Things Architectures for Weather and Environ-
mental Monitoring in Former Mining Areas. In IN-
Adapting a Generic Smart Service Platform Architecture to the Road-Based Physical Internet
755