da Silva, V. G., Kirikova, M., and Alksnis, G. (2018). Con-
tainers for virtualization: An overview. Appl. Comput.
Syst., 23(1):21–27.
Docker (2021). Docker documentation.
https://docs.docker.com. Access Date August,
2022.
Ganaie, M., Hu, M., et al. (2021). Ensemble deep learning:
A review. arXiv preprint arXiv:2104.02395.
Haque, M. U. and Babar, M. A. (2022). Well begun is
half done: An empirical study of exploitability & im-
pact of base-image vulnerabilities. In 2022 IEEE In-
ternational Conference on Software Analysis, Evolu-
tion and Reengineering (SANER), pages 1066–1077.
IEEE.
Haque, M. U., Iwaya, L. H., and Babar, M. A. (2020).
Challenges in docker development: A large-scale
study using stack overflow. In Proceedings of the
14th ACM/IEEE International Symposium on Empiri-
cal Software Engineering and Measurement (ESEM),
pages 1–11.
Haque, M. U., Kholoosi, M. M., and Babar, M. A. (2022).
Kgsecconfig: A knowledge graph based approach for
secured container orchestrator configuration. In 2022
IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 420–
431. IEEE.
Javed, O. and Toor, S. (2021). An evaluation of container
security vulnerability detection tools. In 2021 5th In-
ternational Conference on Cloud and Big Data Com-
puting (ICCBDC), pages 95–101.
Kao, A. and Poteet, S. R. (2007). Natural language pro-
cessing and text mining. Springer Science & Business
Media.
Kim, S., Kim, B. J., and Lee, D. H. (2021). Prof-gen:
Practical study on system call whitelist generation for
container attack surface reduction. In 2021 IEEE
14th International Conference on Cloud Computing
(CLOUD), pages 278–287. IEEE.
Kwon, S. and Lee, J.-H. (2020). Divds: Docker image vul-
nerability diagnostic system. IEEE Access, 8:42666–
42673.
Li, Z., Jing, X.-Y., and Zhu, X. (2018). Progress on ap-
proaches to software defect prediction. Iet Software,
12(3):161–175.
Luque, A., Carrasco, A., Martín, A., and de las Heras, A.
(2019). The impact of class imbalance in classifica-
tion performance metrics based on the binary confu-
sion matrix. Pattern Recognition, 91:216–231.
Ma, Y., Fakhoury, S., Christensen, M., Arnaoudova, V., Zo-
gaan, W., and Mirakhorli, M. (2018). Automatic clas-
sification of software artifacts in open-source applica-
tions. In 2018 IEEE/ACM 15th International Confer-
ence on Mining Software Repositories (MSR), pages
414–425. IEEE.
Mann, H. B. and Whitney, D. R. (1947). On a test of
whether one of two random variables is stochastically
larger than the other. The annals of mathematical
statistics, pages 50–60.
McKnight, P. E. and Najab, J. (2010). Mann-whitney u test.
The Corsini encyclopedia of psychology, pages 1–1.
Menzies, T., Majumder, S., Balaji, N., Brey, K., and Fu, W.
(2018). 500+ times faster than deep learning:(a case
study exploring faster methods for text mining stack-
overflow). In 2018 IEEE/ACM 15th International
Conference on Mining Software Repositories (MSR),
pages 554–563. IEEE.
Overflow, S. (2022). Stack overflow survey results.
https://insights.stackoverflow.com/survey. Jan, 2023.
Pahl, C., Brogi, A., Soldani, J., and Jamshidi, P. (2017).
Cloud container technologies: a state-of-the-art re-
view. IEEE Transactions on Cloud Computing.
RedHat (2021). State of kubernetes security report.
https://www.redhat.com/en/engage/state-kubernetes-
security-s-202106210910. Access Date August,
2022.
Snoek, J., Larochelle, H., and Adams, R. P. (2012). Practi-
cal bayesian optimization of machine learning algo-
rithms. Advances in neural information processing
systems, 25.
Sultan, S., Ahmad, I., and Dimitriou, T. (2019). Container
security: Issues, challenges, and the road ahead. IEEE
Access, 7:52976–52996.
Sworna, Z. T., Islam, C., and Babar, M. A. (2022). Apiro:
A framework for automated security tools api recom-
mendation. ACM Transactions on Software Engineer-
ing and Methodology.
Trivy (2020). Trivy. https://github.com/aquasecurity/trivy.
Access Date Jan, 2023.
Van der Maaten, L. and Hinton, G. (2008). Visualizing data
using t-sne. Journal of machine learning research,
9(11).
Wang, P., Jin, C., and Jin, S.-W. (2012). Software defect
prediction scheme based on feature selection. In 2012
Fourth International Symposium on Information Sci-
ence and Engineering, pages 477–480. IEEE.
Wang, Z., Zoghi, M., Hutter, F., Matheson, D., and De Fre-
itas, N. (2013). Bayesian optimization in high dimen-
sions via random embeddings. In Twenty-Third inter-
national joint conference on artificial intelligence.
Wist, K., Helsem, M., and Gligoroski, D. (2021). Vulner-
ability analysis of 2500 docker hub images. In Ad-
vances in Security, Networks, and Internet of Things,
pages 307–327. Springer.
Xu, Y., Jones, G. J., Li, J., Wang, B., and Sun, C. (2007). A
study on mutual information-based feature selection
for text categorization. Journal of Computational In-
formation Systems, 3(3):1007–1012.
Zar, J. H. (1972). Significance testing of the spearman rank
correlation coefficient. Journal of the American Sta-
tistical Association, 67(339):578–580.
Zerouali, A., Mens, T., Decan, A., Gonzalez-Barahona, J.,
and Robles, G. (2021). A multi-dimensional analysis
of technical lag in debian-based docker images. Em-
pirical Software Engineering, 26(2):1–45.
Zhu, H. and Gehrmann, C. (2021a). Apparmor profile gen-
erator as a cloud service. In CLOSER, pages 45–55.
Zhu, H. and Gehrmann, C. (2021b). Lic-sec: an enhanced
apparmor docker security profile generator. Journal of
Information Security and Applications, 61:102924.
Zhu, H. and Gehrmann, C. (2022). Kub-sec, an au-
tomatic kubernetes cluster apparmor profile genera-
tion engine. In 2022 14th International Conference
on COMmunication Systems & NETworkS (COM-
SNETS), pages 129–137. IEEE.
A Study on Early Non-Intrusive Security Assessment for Container Images
647