Hallegatte, S., Green, C., Nicholls, R. J., & Corfee-Morlot,
J. (2013). Future flood losses in major coastal cities.
Nature climate change, 3(9), 802-806.
Herold, M., Roberts, D. A., Gardner, M. E., & Dennison, P.
E. (2004). Spectrometry for urban area remote
sensing—Development and analysis of a spectral
library from 350 to 2400 nm. Remote sensing of
environment, 91(3-4), 304-319.
Hong, Y., & Adler, R. F. (2008). Estimation of global SCS
curve numbers using satellite remote sensing and
geospatial data. International Journal of Remote
Sensing, 29(2), 471-477.
Horn, B. K. (1981). Hill shading and the reflectance map.
Proceedings of the IEEE, 69(1), 14-47.
Lin, C., Wu, C. C., Tsogt, K., Ouyang, Y. C., & Chang, C. I.
(2015). Effects of atmospheric correction and
pansharpening on LULC classification accuracy using
WorldView-2 imagery. Information Processing in
Agriculture, 2(1), 25-36.
Liu, C., Shao, Z., Chen, M., & Luo, H. (2013). MNDISI: A
multi-source composition index for impervious surface
area estimation at the individual city scale. Remote
sensing letters, 4(8), 803-812.
Magaš, D. (1991). Neke promeje u gradskim naseljima
zadarske regije u razdoblju 1857.-1971. godine. Radovi
Zavoda za povijesne znanosti HAZU u Zadru, (33), 239-
258.
Maglione, P., Parente, C., & Vallario, A. (2014). Coastline
extraction using high-resolution WorldView-2 satellite
imagery. European Journal of Remote Sensing, 47(1),
685-699.
Maxar (2020): Worldview-2. Datasheet. (Accessed on 19
November 2022).
Moody, D. I., Brumby, S. P., Rowland, J. C., Altmann, G. L.,
& Larson, A. E. (2014, October). Change detection and
classification of land cover in multispectral satellite
imagery using clustering of sparse approximations
(CoSA) over learned feature dictionaries. In 2014 IEEE
Applied Imagery Pattern Recognition Workshop (AIPR)
(pp. 1-10). IEEE.
Morgan, R. P. C. (2009). Soil erosion and conservation. John
Wiley & Sons.
Mugiraneza, T., Nascetti, A., & Ban, Y. (2019). WorldView-
2 data for hierarchical object-based urban land cover
classification in Kigali: integrating rule-based approach
with urban density and greenness indices. Remote
Sensing, 11(18), 2128.
Okujeni, A., Canters, F., Cooper, S. D., Degerickx, J.,
Heiden, U., Hostert, P., ... & van der Linden, S. (2018).
Generalizing machine learning regression models using
multi-site spectral libraries for mapping vegetation-
impervious-soil fractions across multiple cities. Remote
sensing of environment, 216, 482-496.
Raduła, M. W., Szymura, T. H., & Szymura, M. (2018).
Topographic wetness index explains soil moisture better
than bioindication with Ellenberg’s indicator values.
Ecological Indicators, 85, 172-179.
Rajput, U. K., Ghosh, S. K., & Kumar, A. (2016). Multi-
sensor satellite pan-sharpening based on IHS and
Window Pseudo Wigner distribution integrated
approach: Application to WorldView-2 imagery. Intern-
ational Journal of Image and Data Fusion,7(2),119-147.
Różycka, M., Migoń, P., & Michniewicz, A. (2017).
Topographic Wetness Index and Terrain Ruggedness
Index in geomorphic characterisation of landslide
terrains, on examples from the Sudetes, SW Poland.
Zeitschrift für geomorphologie, Supplementary issues,
61(2), 61-80.
Šiljeg, A. (2013). Digitalni model reljefa u analizi
geomorfometrijskih parametara–primjer PP Vransko
jezero (Doctoral dissertation, Doktorski rad, PMF,
Sveucilište u Zagrebu).
Su, S., Tian, J., Dong, X., Tian, Q., Wang, N., & Xi, Y.
(2022). An impervious surface spectral index on
multispectral imagery using visible and Near-Infrared
bands. Remote Sensing, 14(14), 3391.
Su, S., Tian, J., Dong, X., Tian, Q., Wang, N., & Xi, Y.
(2022). An impervious surface spectral index on
multispectral imagery using visible and Near-Infrared
bands. Remote Sensing, 14(14), 3391.
Sun, G., Chen, X., Jia, X., Yao, Y., & Wang, Z. (2015).
Combinational build-up index (CBI) for effective
impervious surface mapping in urban areas. IEEE
Journal of selected topics in applied earth observations
and remote sensing, 9(5), 2081-2092.
URL1: Imperviousness density 2018. https://land.coper
nicus.eu/pan-european/high-resolution-layers/impervio
usness/status-maps/imperviousness-density-2018?tab=
metadata (Accessed on 17 November 2022).
URL2: https://catalyst.earth/catalyst-system-files/help/CO
MMON/concepts/DEM_buildfromstereo.html
(Accessed on 3 December 2022).
URL3:https://studylib.net/doc/7954755/worldview--2-band
-combinations---c-agg (Accessed on 20 December2022).
USDA (2017): Part 630 Hydrology: National Engineering
Handbook, Chapter 9: Hydrological Soil-Cover
Complexes.
Weng, Q. (2012). Remote sensing of impervious surfaces in
the urban areas: Requirements, methods, and trends.
Remote Sensing of Environment, 117, 34-49.
Woodruff, J. D., Irish, J. L., & Camargo, S. J. (2013).
Coastal flooding by tropical cyclones and sea-level rise.
Nature, 504(7478), 44-52.
Wu, Q., Zhong, R., Zhao, W., Fu, H., & Song, K. (2017). A
comparison of pixel-based decision tree and object-
based Support Vector Machine methods for land-cover
classification based on aerial images and airborne lidar
data. International Journal of Remote Sensing, 38(23),
7176-7195.
Xu, J., Zhao, Y., Zhong, K., Ruan, H., & Liu, X. (2016).
Coupling modified linear spectral mixture analysis and
soil conservation service curve number models to
simulate surface runoff: application to the main urban
area of Guangzhou, China. Water, 8(12), 550.
Yang, J., & He, Y. (2017). Automated mapping of
impervious surfaces in urban and suburban areas:
Linear spectral unmixing of high spatial resolution
imagery. International Journal of Applied Earth
Observation and Geoinformation, 54, 53-64.
Zhang, L., Zhang, M., & Yao, Y. (2018). Mapping seasonal
impervious surface dynamics in Wuhan urban
agglomeration, China from 2000 to 2016. International
journal of applied earth observation and
geoinformation, 70, 51-61.