Ilyas, I. F. and Chu, X. (2019). Data Cleaning. Association
for Computing Machinery, New York, NY, USA.
Karimi, D., Dou, H., Warfield, S. K., and Gholipour, A.
(2020). Deep learning with noisy labels: Exploring
techniques and remedies in medical image analysis.
Medical Image Analysis, 65.
Karla
ˇ
s, B., Interlandi, M., Renggli, C., Wu, W., Zhang, C.,
Mukunthu Iyappan Babu, D., Edwards, J., Lauren, C.,
Xu, A., and Weimer, M. (2020). Building Contin-
uous Integration Services for Machine Learning. In
Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
pages 2407–2415, Virtual Event CA USA. ACM.
Klaise, J., Van Looveren, A., Cox, C., Vacanti, G., and
Coca, A. (2020). Monitoring and explainability of
models in production. arXiv:2007.06299 [cs, stat].
Kreuzberger, D., K
¨
uhl, N., and Hirschl, S. (2022). Machine
Learning Operations (MLOps): Overview, Definition,
and Architecture. https://arxiv.org/abs/2205.02302.
Lewis, D. D. and Gale, W. A. (1994). A sequential algo-
rithm for training text classifiers. In Annual Interna-
tional ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, pages 3–12, Lon-
don. Springer-Verlag.
Li, P., Rao, X., Blase, J., Zhang, Y., Chu, X., and Zhang,
C. (2021). CleanML: A Study for Evaluating the Im-
pact of Data Cleaning on ML Classification Tasks.
arXiv:1904.09483 [cs].
Lwakatare, L. E., Crnkovic, I., R
˚
ange, E., and Bosch, J.
(2020). From a data science driven process to a contin-
uous delivery process for machine learning systems.
In Morisio, M., Torchiano, M., and Jedlitschka, A.,
editors, Product-Focused Software Process Improve-
ment, pages 185–201, Cham. Springer International
Publishing.
Microsoft Corporation (2021). MLOps with Azure Machine
Learning - Accelerating the process of building, train-
ing, and deploying models at scale.
Morisio, M., Torchiano, M., and Jedlitschka, A., editors
(2020). Product-Focused Software Process Improve-
ment: 21st International Conference, PROFES 2020,
Turin, Italy, November 25–27, 2020, Proceedings,
volume 12562 of Lecture Notes in Computer Science.
Springer International Publishing, Cham.
Nascimento, E., Nguyen-Duc, A., Sundbø, I., and Conte,
T. (2020). Software engineering for artificial intelli-
gence and machine learning software: A systematic
literature review. arXiv:2011.03751.
O’Leary, K. and Uchida, M. (2020). Common Problems
with Creating Machine Learning Pipelines from Ex-
isting Code. In Workshop on MLOps Systems.
Paleyes, A., Urma, R.-G., and Lawrence, N. D. (2022).
Challenges in Deploying Machine Learning: a Survey
of Case Studies. arXiv:2011.09926 [cs].
Rajpurkar, P., Chen, E., Banerjee, O., and Topol, E. J.
(2022). AI in health and medicine. Nature Medicine,
28(1):31–38.
Renggli, C., Rimanic, L., G
¨
urel, N. M., Karla
ˇ
s, B., Wu, W.,
and Zhang, C. (2021). A Data Quality-Driven View of
MLOps. arXiv:2102.07750 [cs].
Ruf, P., Madan, M., Reich, C., and Ould-Abdeslam, D.
(2021). Demystifying MLOps and Presenting a
Recipe for the Selection of Open-Source Tools. Ap-
plied Sciences, 11(19).
Rukat, T., Lange, D., Schelter, S., and Biessmann, F. (2020).
Towards automated ml model monitoring: Measure,
improve and quantify data quality. In MLSys 2020
Workshop on MLOps Systems.
Rule, A., Tabard, A., and Hollan, J. D. (2018). Exploration
and Explanation in Computational Notebooks. In
Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems, Montreal QC Canada.
ACM.
Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips,
T., Ebner, D., Chaudhary, V., Young, M., Crespo, J.-
F., and Dennison, D. (2015). Hidden technical debt in
machine learning systems. In Cortes, C., Lawrence,
N., Lee, D., Sugiyama, M., and Garnett, R., editors,
Advances in Neural Information Processing Systems,
volume 28. Curran Associates, Inc.
Serban, A., van der Blom, K., Hoos, H., and Visser, J.
(2020). Adoption and Effects of Software Engineer-
ing Best Practices in Machine Learning. In Proceed-
ings of the 14th ACM / IEEE International Symposium
on Empirical Software Engineering and Measurement
(ESEM). arXiv:2007.14130 [cs].
Settles, B. (2009). Active learning literature survey. Com-
puter Sciences Technical Report 1648, University of
Wisconsin–Madison.
Seung, H. S., Opper, M., and Sompolinsky, H. (1992).
Query by committee. In Proceedings of the Fifth An-
nual Workshop on Computational Learning Theory,
COLT ’92, page 287–294, New York, NY, USA. As-
sociation for Computing Machinery.
Studer, S., Bui, T. B., Drescher, C., Hanuschkin, A.,
Winkler, L., Peters, S., and Mueller, K.-R. (2021).
Towards CRISP-ML(Q): A Machine Learning Pro-
cess Model with Quality Assurance Methodology.
arXiv:2003.05155 [cs, stat].
Tamburri, D. A. (2020). Sustainable MLOps: Trends and
Challenges. 22nd International Symposium on Sym-
bolic and Numeric Algorithms for Scientific Comput-
ing (SYNASC), pages 17–23.
Wirth, R. and Hipp, J. (2000). CRISP-DM: Towards a Stan-
dard Process Model for Data Mining.
Zaharia, M. A., Chen, A., Davidson, A., Ghodsi, A.,
Hong, S. A., Konwinski, A., Murching, S., Nykodym,
T., Ogilvie, P., Parkhe, M., Xie, F., and Zumar, C.
(2018). Accelerating the machine learning lifecycle
with mlflow. IEEE Data Eng. Bull., 41:39–45.
Zhang, J. M., Harman, M., Ma, L., and Liu, Y. (2019). Ma-
chine Learning Testing: Survey, Landscapes and Hori-
zons. arXiv:1906.10742 [cs, stat].
Zhu, X. (2008). Semi-Supervised Learning Literature Sur-
vey.
ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering
212