used very little – or even being discarded.
So, the objective of this work was to develop a
method of predicting the moisture loss in wood while
the logs are stored in piles – a step prior to indus-
trialization, applying Machine Learning classification
based methods to solve this problem.
Furthermore, this work compares and analyzes the
results of the different applied algorithms: FURIA,
Ripper, C4.5 and Random Forest. Of these, the clas-
sification method using the FURIA algorithm was su-
perior to the others, including statistically superior in
relation to the baseline.
From this paper, different future works can be
consider. A tuning of the algorithms’ hyperparame-
ters as well as a regression approach.
ACKNOWLEDGEMENTS
This work was supported by the Brazilian re-
search funding agencies CNPq (305805/2021-5) and
FAPERGS (Programa de Apoio
`
a Fixac¸
˜
ao de Jovens
Doutores no Brasil - 23/2551-0000126-8).
REFERENCES
Allen, J. C. and Barnes, D. F. (1985). The causes of defor-
estation in developing countries. Annals of the associ-
ation of American Geographers, 75(2):163–184.
Breiman, L. (2001). Random forests. Machine learning,
45(1):5–32.
Cohen, W. W. (1995). Fast effective rule induction. In
Twelfth International Conference on Machine Learn-
ing, pages 115–123. Morgan Kaufmann.
Cord
´
on, O., Del Jesus, M. J., and Herrera, F. (1999). A pro-
posal on reasoning methods in fuzzy rule-based clas-
sification systems. International Journal of Approxi-
mate Reasoning, 20(1):21–45.
Estuqui Filho, C. A. (2006). A durabilidade da madeira
na arquitetura sob a ac¸
˜
ao dos fatores naturais: estudo
de casos em bras
´
ılia. Master’s thesis, Faculdade de
Arquitetura e Urbanismo - Universidade de Bras
´
ılia.
Freund, Y. and Mason, L. (1999). The alternating decision
tree learning algorithm. In icml, volume 99, pages
124–133.
Harrington, P. (2012). Machine learning in action. Simon
and Schuster.
Hodges, J. L. and Lehmann, E. L. (1962). Ranks methods
for combination of independent experiments in anal-
ysis of variance. Annals of Mathematical Statistics,
33:482–497.
H
¨
uhn, J. and H
¨
ullermeier, E. (2009). Furia: an algorithm
for unordered fuzzy rule induction. Data Mining and
Knowledge Discovery, 19(3).
J
´
unior, A. S. and Alves, J. E. (2019). Fatores intervenientes
no armazenamento de laminados. Gepros: Gest
˜
ao da
Produc¸
˜
ao, Operac¸
˜
oes e Sistemas, 14(5):190.
Kengen, S. (2001). a pol
´
ıtica florestal brasileira: uma per-
spectiva hist
´
orica [brazilian forest policy: a historical
perspective]. 1º Simp
´
osio Ibero-americano de gest
˜
ao e
economia Florestal, Porto Seguro, Brazil. Instituto de
Pesquisas e estudos Florestais.(2001). Retrieved May,
4:2007.
Khorhidpoor, A., Nazari Shirkouhi, S., and Amin-
Tahmasbi, H. (2023). Risk assessment of public-
private partnership projects for water transmission and
distribution using anfis method. Sharif Journal of In-
dustrial Engineering & Management.
Lima, R., da Silva Cardoso, G., de Proenc¸a, G., and
da Costa, W. G. (2017). Influ
ˆ
encia do tempo de ar-
mazenamento (tpc) da madeira no aceite de cavacos
de eucalipto para a fabricac¸
˜
ao de polpa. In Congresso
Internacional de Celulose e Pape, page 8. Associac¸
˜
ao
Brasileira T
´
ecnica de Celulose e Papel – ABTCP.
Magalh
˜
aes, V. M., Lucca, G., de Lima Bicho, A., and
Borges, E. N. (2022). On the methods to predict mois-
ture content on wood: A literature review. In ICEIS
(1), pages 521–528.
Mahesh, B. (2020). Machine learning algorithms-a re-
view. International Journal of Science and Research
(IJSR).[Internet], 9:381–386.
Quinlan, J. (1993). C4.5: Programs for Machine Learning.
Morgan Kauffman.
Rezende, R. N., Lima, J. T., de Ramos, L. E., Faria, A.
L. R., et al. (2010). Secagem ao ar livre de toras de
eucalyptus grandis em lavras, mg. Cerne, 16:41–47.
Russell, S. J. (2010). Artificial intelligence a modern ap-
proach. Pearson Education, Inc.
Steinwart, I. and Christmann, A. (2008). Support vector
machines. Springer Science & Business Media.
Tan, P.-N., Steinbach, M., and Kumar, V. (2005). Introduc-
tion to Data Mining, (First Edition). Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.
Tavana, M., Nazari-Shirkouhi, S., Mashayekhi, A., and
Mousakhani, S. (2022). An integrated data min-
ing framework for organizational resilience assess-
ment and quality management optimization in trauma
centers. In Operations Research Forum, volume 3,
page 17. Springer.
Tomczak, A., Grodzi
´
nski, G., Jakubowski, M., Jelonek, T.,
and Grzywi
´
nski, W. (2018). Effects of short-term stor-
age method on moisture loss and weight change in
beech timber. Croatian Journal of Forest Engineer-
ing: Journal for Theory and Application of Forestry
Engineering, 39(1):35–43.
Vieira, P. A., Buainain, A. M., and Figueiredo, E. V. C.
(2019). O brasil alimentar
´
a a china ou a china engolir
´
a
o brasil? Revista Tempo Do Mundo, 2(1):51–82.
Yazdi, M. R. T., Mozaffari, M. M., Nazari-Shirkouhi, S.,
and Asadzadeh, S. M. (2018). Integrated fuzzy dea-
anfis to measure the success effect of human resource
spirituality. Cybernetics and Systems, 49(3):151–169.
Yegnanarayana, B. (2009). Artificial neural networks. PHI
Learning Pvt. Ltd.
ICEIS 2023 - 25th International Conference on Enterprise Information Systems
614