Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T.,
Foster, C., Phang, J., He, H., Thite, A., Nabeshima,
N., Presser, S., and Leahy, C. (2020). The Pile: An
800GB Dataset of Diverse Text for Language Model-
ing.
Heyman, G., Huysegems, R., Justen, P., and Van Cutsem,
T. (2021). Natural language-guided programming. In
Proceedings of the 2021 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Re-
flections on Programming and Software, pages 39–55.
Association for Computing Machinery.
Hoover, B., Strobelt, H., and Gehrmann, S. (2020).
exBERT: A Visual Analysis Tool to Explore Learned
Representations in Transformer Models. In Proceed-
ings of the 58th Annual Meeting of the Association for
Computational Linguistics: System Demonstrations,
pages 187–196. Association for Computational Lin-
guistics.
Jain, N., Vaidyanath, S., Iyer, A., Natarajan, N.,
Parthasarathy, S., Rajamani, S., and Sharma, R.
(2022). Jigsaw: large language models meet pro-
gram synthesis. In Proceedings of the 44th Inter-
national Conference on Software Engineering, pages
1219–1231. Association for Computing Machinery.
Li, R., Soliman, M., Liang, P., and Avgeriou, P. (2022).
Symptoms of Architecture Erosion in Code Reviews:
A Study of Two OpenStack Projects. In 2022 IEEE
19th International Conference on Software Architec-
ture (ICSA), pages 24–35.
Ma, W., Zhao, M., Xie, X., Hu, Q., Liu, S., Zhang, J., Wang,
W., and Liu, Y. (2022). Is Self-Attention Powerful to
Learn Code Syntax and Semantics?
Maaten, L. v. d. and Hinton, G. (2008). Visualizing Data
using t-SNE. Journal of Machine Learning Research,
9(86):2579–2605.
MacNeil, S., Tran, A., Mogil, D., Bernstein, S., Ross, E.,
and Huang, Z. (2022). Generating Diverse Code Ex-
planations using the GPT-3 Large Language Model.
In Proceedings of the 2022 ACM Conference on In-
ternational Computing Education Research - Volume
2, volume 2, pages 37–39. Association for Computing
Machinery.
McInnes, L. and Healy, J. (2017). Accelerated Hierarchical
Density Based Clustering. In 2017 IEEE International
Conference on Data Mining Workshops (ICDMW),
pages 33–42.
Mumtaz, H., Singh, P., and Blincoe, K. (2021). A system-
atic mapping study on architectural smells detection.
Journal of Systems and Software, 173:110885.
Neri, D., Soldani, J., Zimmermann, O., and Brogi,
A. (2020). Design principles, architectural smells
and refactorings for microservices: a multivocal re-
view. SICS Software-Intensive Cyber-Physical Sys-
tems, 35(1):3–15.
Ponce, F., Soldani, J., Astudillo, H., and Brogi, A. (2022).
Smells and refactorings for microservices security: A
multivocal literature review. Journal of Systems and
Software, 192:111393.
Radford, A., Narasimhan, K., Salimans, T., and Sutskever,
I. (2018). Improving Language Understanding by
Generative Pre-Training. Technical report.
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. (2019). Language models are unsuper-
vised multitask learners.
Rajaraman, A. and Ullman, J. D. (2011). Data Mining. In
Mining of Massive Datasets, pages 1–17. Cambridge
University Press.
Rajbhandari, S., Rasley, J., Ruwase, O., and He, Y. (2020).
ZeRO: memory optimizations toward training trillion
parameter models. In Proceedings of the Interna-
tional Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–16. IEEE
Press.
Rajbhandari, S., Ruwase, O., Rasley, J., Smith, S., and He,
Y. (2021). ZeRO-infinity: breaking the GPU memory
wall for extreme scale deep learning. In Proceedings
of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pages
1–14. Association for Computing Machinery.
Rasley, J., Rajbhandari, S., Ruwase, O., and He, Y. (2020).
DeepSpeed: System Optimizations Enable Training
Deep Learning Models with Over 100 Billion Param-
eters. In Proceedings of the 26th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data
Mining, pages 3505–3506. Association for Comput-
ing Machinery.
Ren, P., Xiao, Y., Chang, X., Huang, P.-Y., Li, Z., Gupta,
B. B., Chen, X., and Wang, X. (2021). A Survey
of Deep Active Learning. ACM Computing Surveys,
54(9):180:1–180:40.
Sarsa, S., Denny, P., Hellas, A., and Leinonen, J. (2022).
Automatic Generation of Programming Exercises and
Code Explanations Using Large Language Models. In
Proceedings of the 2022 ACM Conference on Inter-
national Computing Education Research - Volume 1,
volume 1, pages 27–43. Association for Computing
Machinery.
Sharma, T., Kechagia, M., Georgiou, S., Tiwari, R., and
Sarro, F. (2021). A Survey on Machine Learning
Techniques for Source Code Analysis.
Shorten, C. and Khoshgoftaar, T. M. (2023). Language
Models for Deep Learning Programming: A Case
Study with Keras. In Wani, M. A. and Palade, V.,
editors, Deep Learning Applications, Volume 4, pages
135–161. Springer Nature.
Sontakke, A. N., Patwardhan, M., Vig, L., Medicherla,
R. K., Naik, R., and Shroff, G. (2022). Code Summa-
rization: Do Transformers Really Understand Code?
In Deep Learning for Code Workshop.
Tenney, I., Wexler, J., Bastings, J., Bolukbasi, T., Coenen,
A., Gehrmann, S., Jiang, E., Pushkarna, M., Rade-
baugh, C., Reif, E., and Yuan, A. (2020). The Lan-
guage Interpretability Tool: Extensible, Interactive
Visualizations and Analysis for NLP Models. In Pro-
ceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing: System Demon-
strations, pages 107–118. Association for Computa-
tional Linguistics.
Thapa, C., Jang, S. I., Ahmed, M. E., Camtepe, S.,
Pieprzyk, J., and Nepal, S. (2022). Transformer-Based
Language Models for Software Vulnerability Detec-
tion. In Proceedings of the 38th Annual Computer Se-
Analyzing Declarative Deployment Code with Large Language Models
295