chine learning approach for design-pattern detection.
J. Syst. Softw., 175:110919.
Chihada, A., Jalili, S., Hasheminejad, S. M. H., and Zan-
gooei, M. H. (2015). Source code and design confor-
mance, design pattern detection from source code by
classification approach. Appl. Soft Comput., 26:357–
367.
Combemale, B., Kienzle, J., Mussbacher, G., Ali, H.,
Amyot, D., Bagherzadeh, M., Batot, E., Bencomo, N.,
Benni, B., Bruel, J., Cabot, J., Cheng, B. H. C., Collet,
P., Engels, G., Heinrich, R., J
´
ez
´
equel, J., Koziolek, A.,
Mosser, S., Reussner, R. H., Sahraoui, H. A., Saini,
R., Sallou, J., Stinckwich, S., Syriani, E., and Wim-
mer, M. (2021). A hitchhiker’s guide to model-driven
engineering for data-centric systems. IEEE Softw.,
38(4):71–84.
Doya, K. and Wang, D. (2022). Announcement of the neural
networks best paper award. Neural Networks, 145:xix.
Elmahdy, S., Ali, T., and Mohamed, M. (2021). Regional
mapping of groundwater potential in ar rub al khali,
arabian peninsula using the classification and regres-
sion trees model. Remote. Sens., 13(12):2300.
Ferenc, R., Besz
´
edes,
´
A., F
¨
ul
¨
op, L. J., and Lele, J. (2005).
Design pattern mining enhanced by machine learning.
In 21st IEEE International Conference on Software
Maintenance (ICSM 2005), 25-30 September 2005,
Budapest, Hungary, pages 295–304. IEEE Computer
Society.
Fontana, F. A., Caracciolo, A., and Zanoni, M. (2012).
DPB: A benchmark for design pattern detection tools.
In 16th European Conference on Software Main-
tenance and Reengineering, pages 235–244. IEEE
Computer Society.
Fontana, F. A. and Zanoni, M. (2011). A tool for design
pattern detection and software architecture reconstruc-
tion. Inf. Sci., 181(7):1306–1324.
Yann-Ga
¨
el Gu
´
eh
´
eneuc P-MARt: Pattern-like Micro Archi-
tecture Repository.
Gamma, E., Helm, R., Johnson, R., and Vlissides, J. M.
(1994). Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Profes-
sional, 1 edition.
Gu
´
eh
´
eneuc, Y., Guyomarc’h, J., and Sahraoui, H. A.
(2010). Improving design-pattern identification: a
new approach and an exploratory study. Softw. Qual.
J., 18(1):145–174.
Gu
´
eh
´
eneuc, Y.-G. (2007). P-mart : Pattern-like micro ar-
chitecture repository.
Hussain, S., Keung, J., Khan, A. A., Ahmad, A., Cuomo,
S., Piccialli, F., Jeon, G., and Akhunzada, A. (2018).
Implications of deep learning for the automation of
design patterns organization. J. Parallel Distributed
Comput., 117:256–266.
Kim, H. and Boldyreff, C. (2000). A method to recover de-
sign patterns using software product metrics. In Soft-
ware Reuse: Advances in Software Reusability, 6th In-
ternational Conerence, volume 1844 of Lecture Notes
in Computer Science, pages 318–335. Springer.
M.Schnyer, D. A. (2020). Support vector machine. In Ma-
chine Learning, pages 101–121. ScienceDirect.
Murphy, K. P. (2012). Machine learning - a probabilis-
tic perspective. Adaptive computation and machine
learning series. MIT Press.
Nacef, A., Khalfallah, A., Bahroun, S., and Ben Ahmed, S.
(2022). Defining and extracting singleton design pat-
tern information from object-oriented software pro-
gram. In Advances in Computational Collective Intel-
ligence, pages 713–726, Cham. Springer International
Publishing.
Nazar, N., Aleti, A., and Zheng, Y. (2022). Feature-based
software design pattern detection. J. Syst. Softw.,
185:111179.
Peterson, L. E. (2009). K-nearest neighbor.
Satoru Uchiyama, Atsuto Kubo, H. W. Y. F. Detecting de-
sign patterns in object-oriented program source code
by using metrics and machine learning. Proceedings
of the 5th International Workshop on Software Qual-
ity and Maintainability.
Sherstinsky, A. (2018). Fundamentals of recurrent neural
network (RNN) and long short-term memory (LSTM)
network. CoRR, abs/1808.03314.
Stencel, K. and Wegrzynowicz, P. Implementation variants
of the singleton design pattern. In On the Move to
Meaningful Internet Systems, series = Lecture Notes
in Computer Science, volume = 5333, pages = 396–
406, publisher = Springer, year = 2008.
Thaller, H., Linsbauer, L., and Egyed, A. (2019). Fea-
ture maps: A comprehensible software representa-
tion for design pattern detection. In 26th IEEE Inter-
national Conference on Software Analysis, Evolution
and Reengineering, pages 207–217.
Tsantalis, N., Chatzigeorgiou, A., Stephanides, G., and
Halkidis, S. T. (2006). Design pattern detection us-
ing similarity scoring. IEEE Trans. Software Eng.,
32(11):896–909.
von Detten, M. and Becker, S. (2011). Combining clus-
tering and pattern detection for the reengineering of
component-based software systems. In 7th Interna-
tional Conference on the Quality of Software Archi-
tectures, pages 23–32. ACM.
Wegrzynowicz, P. and Stencel, K. (2013). Relaxing queries
to detect variants of design patterns. In Proceedings of
the 2013 Federated Conference on Computer Science
and Information Systems, Krak
´
ow, Poland, September
8-11, 2013, pages 1559–1566.
Xiong, R. and Li, B. (2019). Accurate design pattern
detection based on idiomatic implementation match-
ing in java language context. In 26th IEEE Inter-
national Conference on Software Analysis, Evolution
and Reengineering, pages 163–174. IEEE.
Yu, D., Zhang, P., Yang, J., Chen, Z., Liu, C., and Chen, J.
(2018). Efficiently detecting structural design pattern
instances based on ordered sequences. J. Syst. Softw.,
142:35–56.
Zanoni, M., Fontana, F. A., and Stella, F. (2015). On ap-
plying machine learning techniques for design pattern
detection. J. Syst. Softw., 103:102–117.
Features and Supervised Machine Learning Based Method for Singleton Design Pattern Variants Detection
237