de Investigação em Gestão de Informação (MagIC),
Project UIDB/00239/2020 (Forest Research Centre),
both supported by the Portuguese Foundation for
Science and Technology (FCT).
REFERENCES
Abercrombie, S. P., & Friedl, M. A. (2016). Improving the
Consistency of Multitemporal Land Cover Maps Using
a Hidden Markov Model. IEEE Transactions on
Geoscience and Remote Sensing, 54(2), 703–713.
https://doi.org/10.1109/TGRS.2015.2463689
Alves, A., Marcelino, F., Gomes, E., Rocha, J., & Caetano,
M. (2022). Spatiotemporal Land-Use Dynamics in
Continental Portugal 1995–2018. Sustainability,
14(23), 30. https://doi.org/10.3390/su142315540
Balata, D., Gama, I., Domingos, T., & Proença, V. (2022).
Using Satellite NDVI Time-Series to Monitor Grazing
Effects on Vegetation Productivity and Phenology in
Heterogeneous Mediterranean Forests. Remote
Sensing, 14(10), 2322. https://doi.org/10.3390/
rs14102322
Bartels, S. F., Chen, H. Y. H., Wulder, M. A., & White, J.
C. (2016). Trends in post-disturbance recovery rates of
Canada’s forests following wildfire and harvest. Forest
Ecology and Management, 361, 194–207.
https://doi.org/10.1016/j.foreco.2015.11.015
Brown, C. F., Brumby, S. P., Guzder-Williams, B., Birch,
T., Hyde, S. B., Mazzariello, J., Czerwinski, W.,
Pasquarella, V. J., Haertel, R., Ilyushchenko, S.,
Schwehr, K., Weisse, M., Stolle, F., Hanson, C.,
Guinan, O., Moore, R., & Tait, A. M. (2022). Dynamic
World, Near real-time global 10 m land use land cover
mapping. Scientific Data, 9(1), 251. https://doi.org/10.
1038/s41597-022-01307-4
Brown, J. F., Tollerud, H. J., Barber, C. P., Zhou, Q.,
Dwyer, J. L., Vogelmann, J. E., Loveland, T. R.,
Woodcock, C. E., Stehman, S. V., Zhu, Z., Pengra, B.
W., Smith, K., Horton, J. A., Xian, G., Auch, R. F.,
Sohl, T. L., Sayler, K. L., Gallant, A. L., Zelenak, D.,
… Rover, J. (2020). Lessons learned implementing an
operational continuous United States national land
change monitoring capability: The Land Change
Monitoring, Assessment, and Projection (LCMAP)
approach. Remote Sensing of Environment, 238,
111356. https://doi.org/10.1016/j.rse.2019.111356
Cai, S., Liu, D., Sulla-Menashe, D., & Friedl, M. A. (2014).
Enhancing MODIS land cover product with a spatial–
temporal modeling algorithm. Remote Sensing of
Environment, 147, 243–255. https://doi.org/10.1016/j.
rse.2014.03.012
Corcoran, J., Knight, J., Pelletier, K., Rampi, L., & Wang,
Y. (2015). The Effects of Point or Polygon Based
Training Data on RandomForest Classification
Accuracy of Wetlands. Remote Sensing, 7(4), 4002–
4025. https://doi.org/10.3390/rs70404002
Costa, H., Benevides, P. J., Moreira, F. D., & Caetano, M.
R. (2022a). Detection and classification of changes in
agriculture, forest, and shrublands for land cover map
updating in Portugal. Em C. M. Neale & A. Maltese
(Eds.), Remote Sensing for Agriculture, Ecosystems,
and Hydrology XXIV (p. 19). SPIE. https://doi.org/
10.1117/12.2636127
Costa, H., Benevides, P., Moreira, F. D., Moraes, D., &
Caetano, M. (2022b). Spatially Stratified and Multi-
Stage Approach for National Land Cover Mapping
Based on Sentinel-2 Data and Expert Knowledge.
Remote Sensing, 14(8), 1865. https://doi.org/10.
3390/rs14081865
Franklin, S. E., Ahmed, O. S., Wulder, M. A., White, J. C.,
Hermosilla, T., & Coops, N. C. (2015). Large Area
Mapping of Annual Land Cover Dynamics Using
Multitemporal Change Detection and Classification of
Landsat Time Series Data. Canadian Journal of Remote
Sensing, 41(4), 293–314. https://doi.org/10.
1080/07038992.2015.1089401
García, M., Moutahir, H., Casady, G., Bautista, S., &
Rodríguez, F. (2019). Using Hidden Markov Models
for Land Surface Phenology: An Evaluation Across a
Range of Land Cover Types in Southeast Spain. Remote
Sensing, 11(5), 507. https://doi.org/10.3390/rs
11050507
Gómez, C., White, J. C., & Wulder, M. A. (2016). Optical
remotely sensed time series data for land cover
classification: A review. ISPRS Journal of
Photogrammetry and Remote Sensing, 116, 55–72.
https://doi.org/10.1016/j.isprsjprs.2016.03.008
Gong, W., Fang, S., Yang, G., & Ge, M. (2017). Using a
Hidden Markov Model for Improving the Spatial-
Temporal Consistency of Time Series Land Cover
Classification. ISPRS International Journal of Geo-
Information, 6(10), 292. https://doi.org/10.3390/ijg
i6100292
Hermosilla, T., Wulder, M. A., White, J. C., Coops, N. C.,
& Hobart, G. W. (2018). Disturbance-Informed Annual
Land Cover Classification Maps of Canada’s Forested
Ecosystems for a 29-Year Landsat Time Series.
Canadian Journal of Remote Sensing, 44(1), 67–87.
https://doi.org/10.1080/07038992.2018.1437719
Liu, C., Song, W., Lu, C., & Xia, J. (2021). Spatial-
Temporal Hidden Markov Model for Land Cover
Classification Using Multitemporal Satellite Images.
IEEE Access, 9, 76493–76502. https://doi.org/1
0.1109/ACCESS.2021.3080926
Marcel Buchhorn, Lesiv, M., Tsendbazar, N.-E., Herold,
M., Bertels, L., & Smets, B. (2020). Copernicus Global
Land Cover Layers—Collection 2. Remote Sensing,
12(6), 1044. https://doi.org/10.3390/rs12061044
Moraes, D., Benevides, P., Costa, H., Moreira, F. D., &
Caetano, M. (2021). Influence of Sample Size in Land
Cover Classification Accuracy Using Random Forest and
Sentinel-2 Data in Portugal. 2021 IEEE International
Geoscience and Remote Sensing Symposium IGARSS,
4232–4235. https://doi.org/10.1109/IGARSS47720
.2021.9553924
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay,
É. (2011). Scikit-Learn: Machine Learning in Python. J.
Mach. Learn. Res., 12, 2825–2830.