Giray, G (2021) - A software engineering perspective on
engineering machine learning systems: State of the art
and challenges - Science Direct.
Gramajo, M., Ballejos, L., Ale, M. (2020) - Seizing
Requirements Engineering Issues through Supervised
Learning Techniques – IEEE.
Gupta A., Sharma Sh., Goyal, Sh., Rashid M. (2020) –
Novel SGBoost Tuned Machine Learning Model for
Software Bug Prediction - IEEE
Gupta, S., Chug, A. (2021) - An Optimized Extreme
Learning Machine Algorithm for Improving Software
Maintainability Prediction – IEEE.
Gupta, H., Kumar, L., Neti, L. B. M. (2019) - An Empirical
Framework for Code Smell Prediction using Extreme
Learning Machine – IEEE.
Haleem, M., Farooqui, M. F., Faisal, M. (2021) - Cognitive
impact validation of requirement uncertainty in
software project development – Science Direct.
Herzig, K. and Nagappan, N. (2015) - empirically detecting
false test alarms using association rules – IEEE.
Hutchinson, B., Smart, A., Hanna, A., Denton, E. (2021) -
Towards Accountability for Machine Learning
Datasets: Practices from Software Engineering and
Infrastructure – ACM.
Iqbal, T., Elahidoost, P., Lúcio, L. (2018) - A Bird's Eye
View on Requirements Engineering and Machine
Learning – IEEE.
Jha, S., Kumar, R., Son, L. H., Abdel-Basset, M.,
Priyadarshini, I., Sharma, R., Long, H. V. (2019) - Deep
Learning Approach for Software Maintainability
Metrics Prediction
Karim, M. S., Warnars, H. L. H. S., Gaol, F. L.,
Abdurachman, E., Soewito, B. (2017) - Software
metrics for fault prediction using machine learning
approaches: A literature review with PROMISE
repository dataset – IEEE.
Khomh, F., Adams, B., Cheng, J. , Fokaefs, M., Antoniol,
G. (2018) - Software Engineering for MachineLearning
Applications: The Road Ahead – IEEE.
Kim, M., Zimmermann, T., DeLine, R. and Begel, A.
(2018) - Data scientists in software teams: State of the
art and challenges – IEEE.
Li, J. J., Ulrich, A., Bai, X., Bertolino, A. (2020) - Advances
in test automation for software with special focus on
artificial intelligence and machine learning – Springer.
Lima, R. , Da Cruz, A. M. R., Ribeiro, J. (2020) - Artificial
Intelligence Applied to Software Testing: A Literature
Review – IEEE
Meinke, K., Bennaceur, A. (2018) - Machine Learning for
Software Engineering: Models, Methods, and
Applications – IEEE.
Mhawish, M. Y., Gupta, M. (2019) - Software Metrics and
tree-based machine learning algorithms for
distinguishing and detecting similar structure design
patterns – Springer.
Nakajima, S. (2018) - Quality Assurance of Machine
Learning Software – IEEE.
Nasrabadi, M. Z., Parsa, S. (2021) – Learning to Predict
Software Testability - IEEE.
Navaei, M., Tabrizi, N. (2022) - Machine Learning in
Software Development Life Cycle: A Comprehensive
Review – Research Gate
Navarro-Almanza, R., Juarez-Ramirez, R., Licea, G. (2017)
- Towards Supporting Software Engineering Using
Deep Learning: A Case of Software Requirements
Classification – IEEE.
Quba, G., Qaisi, H. A., Althunibat, A., AlZu’bi, S. (2021) -
Software Requirements Classification using Machine
Learning algorithm’s – IEEE.
Panichella, S., Ruiz, M. (2020) - Requirements-Collector:
Automating Requirements Specification from
Elicitation Sessions and User Feedback – IEEE.
Rezaei, M., Tabrizi, N. (2022) – Recommender System
using Reinforcement Learning: A Survey – DBLP.
Roper, M. (2019) - Using Machine Learning to Classify Test
Outcomes – IEEE.
Sagar, P. S., AlOmar, E. A., Mkaouer, M. W., Ouni, A.,
Christian Newman (2021) - Comparing Commit
Messages and Source Code Metrics for the Prediction
Refactoring Activities – Research Gate.
Shafiq, S., Mashkoor, A., Mayr-Dorn, C., Egyed, A. (2021)
- A Literature Review of Using Machine Learning in
Software Development Life Cycle Stages – IEEE.
Sobhy, D., Bahsoon, R., Minku, L., Kazman, R. (2021) -
Evaluation of Software Architectures under
Uncertainty: A Systematic Literature Review – ACM.
Sulaiman, S. (2005) - Viewing Software Artifacts for
Different Software Maintenance Categories Using
Graph Representations – Research Gate.
Talele, P., Phalnikar, R. (2021) - Classification and
Prioritisation of Software Requirements using Machine
Learning – A Systematic Review – IEEE.
Wan, Z., Xia, X., Lo, D., Murphy, G. C. (2019) - How does
Machine Learning Change Software Development
Practices? – IEEE.
Xin, Y., Kong, L., Liu, Z., Chen, Y., Li, Y., Zhu, H., Gao,
H., Hou, H., Wang, C. (2018) - Machine Learning and
Deep Learning Methods for Cybersecurity – IEEE.
Yurdakurbann, V., Erdogan, N. (2018) - Comparison of
machine learning methods for software project effort
estimation – IEEE.
Zhu, H. (2018) - Software Testing as a Problem of Machine
Learning: Towards a Foundation on Computational
Learning Theory – IEEE.
Zhang, L., Tan, J., et al, D. H.. (2017) - From machine
learning to deep learning: progress in machine
intelligence for rational drug discovery – IEEE.
Zhang, X., Gu, C., Lin, J (2006) - Support Vector Machines
for Anomaly Detection – Research Gate.
Zhang, X., Zhou, T., Zhu, C. (2017) -
An Empirical Study
of the Impact of Bad Designs on Defect Proneness –
IEEE.
Zhu, Y, Chen, L, Zhou, H, Feng, W., Zhu, Q. (2018) -
Design and Implementation of WeChat Robot Based on
Machine Learning – IEEE.