Arai, H., Chayama, Y., Iyatomi, H., and Oishi, K. (2018).
Significant Dimension Reduction of 3D Brain MRI
using 3D Convolutional Autoencoders. volume 2018,
pages 5162–5165.
Atique, M. and Bhagat, A. P. (2016). A Novel Localized
Entropy-based Medical Image Retrieval. IETE Jour-
nal of Research, 62(5):721–732.
Ayyachamy, S. and Manivannan, V. S. (2013). Medical im-
age registration-based retrieval using distance metrics.
International Journal of Imaging Systems and Tech-
nology, 23(4):360–371.
Bai, W., Sinclair, M., Tarroni, G., Oktay, O., Rajchl, M.,
Vaillant, G., Lee, A. M., Aung, N., Lukaschuk, E.,
Sanghvi, M. M., Zemrak, F., Fung, K., Paiva, J. M.,
Carapella, V., Kim, Y. J., Suzuki, H., Kainz, B.,
Matthews, P. M., Petersen, S. E., Piechnik, S. K.,
Neubauer, S., Glocker, B., and Rueckert, D. (2018).
Automated cardiovascular magnetic resonance image
analysis with fully convolutional networks. Journal of
Cardiovascular Magnetic Resonance, 20(1):65.
Barbu, T. (2009). Content-based image retrieval using Ga-
bor filtering. Proceedings - International Workshop
on Database and Expert Systems Applications, DEXA,
pages 236–240.
Bergamasco, L. C., Oliveira, H., B
´
ıscaro, H., Wechsler, H.,
and Nunes, F. L. (2015a). Using Bipartite Graphs for
3D Cardiac Model Retrieval. In 2015 IEEE 28th In-
ternational Symposium on Computer-Based Medical
Systems, pages 232–237.
Bergamasco, L. C., Oliveira, R. A., Wechsler, H., Da-
juda, C., Delamaro, M., and Nunes, F. L. (2015b).
Content-Based Image Retrieval of 3D Cardiac Mod-
els to Aid the Diagnosis of Congestive Heart Failure
by Using Spectral Clustering. In 2015 IEEE 28th In-
ternational Symposium on Computer-Based Medical
Systems, pages 183–186.
Campello, V. M., Gkontra, P., Izquierdo, C., Martin-Isla,
C., Sojoudi, A., Full, P. M., Maier-Hein, K., Zhang,
Y., He, Z., Ma, J., Parreno, M., Albiol, A., Kong, F.,
Shadden, S. C., Acero, J. C., Sundaresan, V., Saber,
M., Elattar, M., Li, H., Menze, B., Khader, F., Haar-
burger, C., Scannell, C. M., Veta, M., Carscadden, A.,
Punithakumar, K., Liu, X., Tsaftaris, S. A., Huang, X.,
Yang, X., Li, L., Zhuang, X., Vilades, D., Descalzo,
M. L., Guala, A., Mura, L. L., Friedrich, M. G., Garg,
R., Lebel, J., Henriques, F., Karakas, M., Cavus, E.,
Petersen, S. E., Escalera, S., Segui, S., Rodriguez-
Palomares, J. F., and Lekadir, K. (2021). Multi-
Centre, Multi-Vendor and Multi-Disease Cardiac Seg-
mentation: The M&Ms Challenge. IEEE Transactions
on Medical Imaging, 40:3543–3554.
Carvalho, E. D., Filho, A. O., Silva, R. R., Ara
´
ujo, F. H., Di-
niz, J. O., Silva, A. C., Paiva, A. C., and Gattass, M.
(2020). Breast cancer diagnosis from histopathologi-
cal images using textural features and CBIR. Artificial
Intelligence in Medicine, 105:101845.
Chang, S.-A. and Kim, R. (2016). The Use of Cardiac Mag-
netic Resonance in Patients with Suspected Coronary
Artery Disease: A Clinical Practice Perspective. Jour-
nal of Cardiovascular Ultrasound, 24:96.
Chaosuwannakit, N. and Makarawate, P. (2021). Left Ven-
tricular Thrombi: Insights from Cardiac Magnetic
Resonance Imaging. Tomography, 7(2):180–188.
Chhabra, P., Garg, N. K., and Kumar, M. (2020).
Content-based image retrieval system using ORB and
SIFT features. Neural Computing and Applications,
32:2725–2733.
Delmondes, P. H. M. and Nunes, F. L. S. (2022). A system-
atic review of multi-slice and multi-frame descriptors
in cardiac MRI exams. Computer Methods and Pro-
grams in Biomedicine, 221:106889.
Deniziak, R. S. and Michno, T. (2019). World wide web
cbir searching using query by approximate shapes. In
Rodr
´
ıguez, S., Prieto, J., Faria, P., Kłos, S., Fern
´
andez,
A., Mazuelas, S., Jim
´
enez-L
´
opez, M. D., Moreno,
M. N., and Navarro, E. M., editors, Distributed Com-
puting and Artificial Intelligence, Special Sessions,
15th International Conference, pages 87–95, Cham.
Springer International Publishing.
Fu, Y., Lei, Y., Wang, T., Curran, W. J., Liu, T., and Yang,
X. (2020). Deep learning in medical image regis-
tration: a review. Physics in Medicine & Biology,
65(20):20TR01.
Gillmann, C., Saur, D., Wischgoll, T., and Scheuermann,
G. (2021). Uncertainty-aware Visualization in Medi-
cal Imaging - A Survey. Computer Graphics Forum,
40:665–689.
Guo, F., Ng, M., Goubran, M., Petersen, S. E., Piechnik,
S. K., Neubauer, S., and Wright, G. (2020). Improving
cardiac MRI convolutional neural network segmenta-
tion on small training datasets and dataset shift: A
continuous kernel cut approach. Medical Image Anal-
ysis, 61:101636.
Hill, D. L. G., Batchelor, P. G., Holden, M., and Hawkes,
D. J. (2001). Medical image registration. Physics in
Medicine & Biology, 46(3):R1.
Huang, J.-H., Yang, C.-H. H., Liu, F., Tian, M., Liu,
Y.-C., Wu, T.-W., Lin, I.-H., Wang, K., Morikawa,
H., Chang, H., Tegner, J., and Worring, M. (2020).
DeepOpht: Medical Report Generation for Retinal
Images via Deep Models and Visual Explanation.
Jafar, A., Hameed, M. T., Akram, N., Waqas, U., Kim,
H. S., and Naqvi, R. A. (2022). CardioNet: Auto-
matic Semantic Segmentation to Calculate the Car-
diothoracic Ratio for Cardiomegaly and Other Chest
Diseases. Journal of Personalized Medicine, 12(6).
Kobayashi, K., Hataya, R., Kurose, Y., Miyake, M., Taka-
hashi, M., Nakagawa, A., Harada, T., and Hamamoto,
R. (2021). Decomposing Normal and Abnormal
Features of Medical Images into Discrete Latent
Codes for Content-Based Image Retrieval. CoRR,
abs/2103.12328.
Kreiser, J., Meuschke, M., Mistelbauer, G., Preim, B., and
Ropinski, T. (2018). A Survey of Flattening-Based
Medical Visualization Techniques. Computer Graph-
ics Forum, 37:597–624.
Margeta, J., Criminisi, A., Lozoya, R. C., Lee, D., and Ay-
ache, N. (2017). Fine-tuned convolutional neural nets
for cardiac MRI acquisition plane recognition. Com-
puter Methods in Biomechanics and Biomedical Engi-
neering: Imaging & Visualization, 5(5):339–349.
A Report on Work: Cardiac MRI CBIR for Pathologies Detetion
673