still require a cognitive effort that is still not easily
automated. In other words, notwithstanding their toy
size, they are a useful educational playground to prac-
tice problem solving and computational thinking.
ACKNOWLEDGMENTS
M. Lodi’s work has been supported by the Spoke 1
“FutureHPC & BigData” of the Italian Research Cen-
ter on High-Performance Computing, Big Data and
Quantum Computing (ICSC) funded by MUR Mis-
sione 4 Componente 2 Investimento 1.4: Potenzia-
mento strutture di ricerca e creazione di “campioni
nazionali di R&S (M4C2-19)” — Next Generation
EU (NGEU).
REFERENCES
Anderson, L. W. and Krathwohl, D. R., editors (2001). A
taxonomy for learning, teaching, and assessing: a re-
vision of Bloom’s taxonomy of educational objectives.
Longman, New York, complete edition.
Bellettini, C., Carimati, F., Lonati, V., Macoratti, R., Mal-
chiodi, D., Monga, M., and Morpurgo, A. (2018). A
platform for the Italian Bebras. In Proceedings of
the 10th International Conference on Computer Sup-
ported Education (CSEDU 2018) — Volume 1, pages
350–357. SCITEPRESS.
Bellettini, C., Lonati, V., Monga, M., Morpurgo, A., and
Palazzolo, M. (2019). Situated learning with Bebras
tasklets. In S., P. and V., D., editors, Informatics
in Schools. Fundamentals of Computer Science and
Software Engineering. ISSEP 2019., volume 11913 of
LNCS, pages 225–239. Springer, Cham.
Bender, E. M., Gebru, T., McMillan-Major, A., and
Shmitchell, S. (2021). On the dangers of stochastic
parrots: Can language models be too big? In Pro-
ceedings of the 2021 ACM Conference on Fairness,
Accountability, and Transparency, FAccT ’21, page
610–623, New York, NY, USA. Association for Com-
puting Machinery.
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger,
G., Henighan, T., Child, R., Ramesh, A., Ziegler, D.,
Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E.,
Litwin, M., Gray, S., Chess, B., Clark, J., Berner,
C., McCandlish, S., Radford, A., Sutskever, I., and
Amodei, D. (2020). Language models are few-shot
learners. In Larochelle, H., Ranzato, M., Hadsell, R.,
Balcan, M., and Lin, H., editors, Advances in Neu-
ral Information Processing Systems, volume 33, pages
1877–1901. Curran Associates, Inc.
Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brock-
man, G., Ray, A., Puri, R., Krueger, G., Petrov, M.,
Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray, S.,
Ryder, N., Pavlov, M., Power, A., Kaiser, L., Bavar-
ian, M., Winter, C., Tillet, P., Such, F. P., Cummings,
D., Plappert, M., Chantzis, F., Barnes, E., Herbert-
Voss, A., Guss, W. H., Nichol, A., Paino, A., Tezak,
N., Tang, J., Babuschkin, I., Balaji, S., Jain, S., Saun-
ders, W., Hesse, C., Carr, A. N., Leike, J., Achiam,
J., Misra, V., Morikawa, E., Radford, A., Knight,
M., Brundage, M., Murati, M., Mayer, K., Welin-
der, P., McGrew, B., Amodei, D., McCandlish, S.,
Sutskever, I., and Zaremba, W. (2021). Evaluating
large language models trained on code. Technical Re-
port ARXIV.2107.03374, arXiv.
Chiazzese, G., Arrigo, M., Chifari, A., Lonati, V., and
Tosto, C. (2018). Exploring the effect of a robotics
laboratory on computational thinking skills in primary
school children using the bebras tasks. In Proceed-
ings of the Sixth International Conference on Tech-
nological Ecosystems for Enhancing Multiculturality,
TEEM’18, pages 25–30, New York, NY, USA. ACM.
Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. (2018). Think you have
solved question answering? Try ARC, the AI2 reason-
ing challenge. Technical Report ARXIV.1803.05457,
arXiv.
Dagien
˙
e, V. (2010). Sustaining informatics education by
contests. In Proceedings of ISSEP 2010, volume 5941
of Lecture Notes in Computer Science, pages 1–12,
Zurich, Switzerland. Springer.
Dagien
˙
e, V. and Sentance, S. (2016). It’s Computational
Thinking! Bebras Tasks in the curriculum. In Pro-
ceedings of ISSEP 2016, volume 9973 of Lecture
Notes in Computer Science, pages 28–39, Cham.
Springer.
Finnie-Ansley, J., Denny, P., Becker, B. A., Luxton-Reilly,
A., and Prather, J. (2022). The robots are coming:
Exploring the implications of OpenAI Codex on in-
troductory programming. In Australasian Computing
Education Conference, ACE ’22, page 10–19, New
York, NY, USA. Association for Computing Machin-
ery.
Gelman, A., Hill, J., and Vehtari, A. (2020). Regression and
other stories. Cambridge University Press.
Haberman, B., Cohen, A., and Dagien
˙
e, V. (2011). The
beaver contest: Attracting youngsters to study com-
puting. In Proceedings of ITiCSE 2011, pages 378–
378, Darmstadt, Germany. ACM.
Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa,
Y. (2022). Large language models are zero-shot rea-
soners. Technical Report ARXIV.2205.11916, arXiv.
Lonati, V., Monga, M., Morpurgo, A., Malchiodi, D., and
Calcagni, A. (2017). Promoting computational think-
ing skills: would you use this Bebras task? In
Dagien
˙
e, V. and Hellas, A., editors, Informatics in
Schools: Focus on Learning Programming: Proceed-
ing of the 10th International Conference on Informat-
ics in Schools: Situation, Evolution, and Perspectives,
ISSEP 2017, volume 10696 of Lecture Notes in Com-
puter Science, pages 102–113, Cham. Springer Inter-
national Publishing.
CSEDU 2023 - 15th International Conference on Computer Supported Education
68