products. International Journal of Logistics Systems
and Management, 13(2):139–161.
Agrawal, S., Singh, R. K., and Murtaza, Q. (2015). A lit-
erature review and perspectives in reverse logistics.
Resources, Conservation and Recycling, 97:76–92.
Alkahtani, M., Ziout, A., Salah, B., Alatefi, M., Abd El-
gawad, A. E. E., Badwelan, A., and Syarif, U. (2021).
An insight into reverse logistics with a focus on collec-
tion systems. Sustainability, 13(2):548.
Asdecker, B. and Karl, D. (2018). Big data analytics in
returns management-are complex techniques necessary
to forecast consumer returns properly? In 2nd Interna-
tional Conference on Advanced Research Methods and
Analytics. Proceedings, pages 39–46.
Asdecker, B., Karl, D., and Sucky, E. (2017). Examining
drivers of consumer returns in e-tailing with real shop
data. In Hawaii International Conference on System
Sciences, pages 4192–4201.
Bai, C. and Sarkis, J. (2013). Flexibility in reverse logis-
tics: a framework and evaluation approach. Journal of
Cleaner Production, 47:306–318.
Bellini, P., Palesi, L. A. I., Nesi, P., and Pantaleo, G. (2022).
Multi clustering recommendation system for fashion
retail. Multimedia Tools and Applications, pages 1–28.
Bimschleger, C., Patel, K., and Leddy, M. (2019). Bringing
it back: Retailers need a synchronized reverse logistics
strategy. Technical report, Deloitte Development LLC.
Chileshe, N., Rameezdeen, R., and Hosseini, M. R. (2016).
Drivers for adopting reverse logistics in the construc-
tion industry: a qualitative study. Engineering, Con-
struction and Architectural Management, 23(2):134–
157.
Das, D., Kumar, R., and Rajak, M. (2020). Designing a
reverse logistics network for an e-commerce firm: A
case study. Operations and Supply Chain Management:
An International Journal, 13(1):48–63.
Deges, F. (2021). Retourencontrolling im online-handel.
Controlling – Zeitschrift f
¨
ur erfolgsorientierte Un-
ternehmenssteuerung, 2/2021:61–68.
Durham, E., Hewitt, A., Bell, R., and Russell, S. (2015).
Technical design for recycling of clothing. In Sustain-
able apparel, pages 187–198. Elsevier.
Flapper, S. D. P. (1995). One-way or reusable distribution
items? TU Eindhoven. Fac. TBDK, Vakgroep LBS:
working paper series, 9504.
Forschungsgruppe Retourenmanagement (2022).
Ergebnisse des europ
¨
aischen retourentachos
ver
¨
offentlicht. https://www.retourenforschung.de/info-
ergebnisse-des-europaeischen-retourentachos-
veroeffentlicht.html. Online; accessed 2023-01-26.
Furferi, R. and Governi, L. (2008). The recycling of wool
clothes: an artificial neural network colour classifi-
cation tool. The International Journal of Advanced
Manufacturing Technology, 37:722–731.
Heckman, J. J. (1979). Sample selection bias as a specifica-
tion error. Econometrica: Journal of the econometric
society, pages 153–161.
Holmes, G., Hall, M., and Prank, E. (1999). Generating rule
sets from model trees. In Australasian joint conference
on artificial intelligence, pages 1–12. Springer.
Ivanov, D. and Dolgui, A. (2021). A digital supply chain
twin for managing the disruption risks and resilience in
the era of industry 4.0. Production Planning & Control,
32(9):775–788.
Jenkins, G. M. (1970). Time Series Analysis; Forecasting
and Control [by] George EP Box and Gwilym M. Jenk-
ins. San Francisco: Holden-Day.
Kottage, G. N., Jayathilake, D. K., Chankuma, K. C., Gane-
goda, G. U., and Sandanayake, T. (2018). Preference
based recommendation system for apparel e-commerce
sites. In 17th international conference on computer
and information science, pages 122–127. IEEE.
Kumar, V. V., Liou, F. W., Balakrishnan, S., and Kumar, V.
(2015). Economical impact of rfid implementation in
remanufacturing: a chaos-based interactive artificial
bee colony approach. Journal of Intelligent Manufac-
turing, 26:815–830.
Lepthien, A. and Clement, M. (2019). Shipping fee sched-
ules and return behavior. Marketing Letters, 30(2):151–
165.
Lewis, T. L., Park, H., Netravali, A. N., and Trejo, H. X.
(2017). Closing the loop: A scalable zero-waste model
for apparel reuse and recycling. International Jour-
nal of Fashion Design, Technology and Education,
10(3):353–362.
Lickert, H., Wewer, A., Dittmann, S., Bilge, P., and Diet-
rich, F. (2021). Selection of suitable machine learning
algorithms for classification tasks in reverse logistics.
Procedia CIRP, 96:272–277.
Lin, T., Liu, Y., Liu, B., Wang, Y., Wu, S., and Zhe, W.
(2021). Hierarchical clustering framework for facility
location selection with practical constraints. IET Cyber-
Physical Systems: Theory & Applications, 6(4):238–
253.
Makkonen, M., Frank, L., and Kemppainen, T. (2021).
The effects of consumer demographics and payment
method preference on product return frequency and rea-
sons in online shopping. In Bled eConference, pages
567–580. University of Maribor.
Mohammed Abdulla, G., Singh, S., and Borar, S. (2019).
Shop your right size: A system for recommending sizes
for fashion products. In Companion Proceedings of
The 2019 World Wide Web Conference, pages 327–334.
Morgan Stanley (2022). Here’s why e-commerce growth can
stay stronger for longer. https://www.morganstanley.
com/ideas/global-ecommerce-growth-forecast-2022/.
Online; accessed 2023-01-26.
Nanayakkara, P. R., Jayalath, M. M., Thibbotuwawa, A.,
and Perera, H. N. (2022). A circular reverse logistics
framework for handling e-commerce returns. Cleaner
Logistics and Supply Chain, 5:100080.
Ocampo, L., Himang, C., Kumar, A., and Brezocnik, M.
(2019). A novel multiple criteria decision-making ap-
proach based on fuzzy dematel, fuzzy anp and fuzzy
ahp for mapping collection and distribution centers in
reverse logistics. Advances in Production Engineering
& Management, 14(3):297–322.
Payne, A. (2015). Open-and closed-loop recycling of textile
and apparel products. In Handbook of life cycle assess-
ICSBT 2023 - 20th International Conference on Smart Business Technologies
24