ETSI (2019a). ETSI GS QKD 012 V1.1.1 (2019-02) -
Quantum Key Distribution (QKD); Device and Com-
munication Channel Parameters for QKD Deploy-
ment.
ETSI (2019b). ETSI GS QKD 014 V1.1.1 (2019-02) -
Quantum Key Distribution (QKD); Protocol and data
format of REST-based key delivery API.
ETSI (2020). ETSI GS QKD 004 V2.1.1 (2020-08) - Quan-
tum Key Distribution (QKD); Application Interface.
ETSI (2022a). ETSI GS QKD 015 V2.1.1 (2022-04) -
Quantum Key Distribution (QKD); Control Interface
for Software Defined Networks.
ETSI (2022b). ETSI GS QKD 018 V1.1.1 (2022-04) -
Quantum Key Distribution (QKD); Orchestration In-
terface for Software Defined Networks.
Forum of Incident Response and Security Teams (2019).
Common Vulnerability Scoring System SIG. https:
//www.first.org/cvss/. Accessed 1.2.2023.
Huang, D., Huang, P., Lin, D., and Zeng, G. (2016). Long-
distance continuous-variable quantum key distribution
by controlling excess noise. Scientific Reports, 6.
International Telecommunication Union (2020a). Infor-
mation security management processes for telecom-
munication organizations. https://www.itu.int/ITU-T/
recommendations/rec.aspx?rec=14044. Accessed
1.2.2023.
International Telecommunication Union (2020b). Secu-
rity framework for quantum key distribution net-
works. https://www.itu.int/ITU-T/recommendations/
rec.aspx?rec=14452. Accessed 1.2.2023.
Jouguet, P., Kunz-Jacques, S., and Diamanti, E. (2013). Pre-
venting calibration attacks on the local oscillator in
continuous-variable quantum key distribution. Physi-
cal Review A, 87(6):062313.
Kiktenko, E., Malyshev, A., Gavreev, M., Bozhedarov, A.,
Pozhar, N., Anufriev, M., and Fedorov, A. (2020).
Lightweight Authentication for Quantum Key Distri-
bution. IEEE Transactions on Information Theory,
PP:1–1.
Kyberturvallisuuskeskus (2021). Kybermittari. https:
//www.kyberturvallisuuskeskus.fi/en/our-services/
situation-awareness-and-network-management/
kybermittari-cybermeter. Accessed 1.2.2023.
Limei, G., Qi, R., Jin, D., and Huang, D. (2020). QKD
Iterative Information Reconciliation Based on LDPC
Codes. International Journal of Theoretical Physics,
59:1717–1729.
L
¨
utkenhaus, N. (1999). Security against individual attacks
for realistic quantum key distribution. Physical Re-
view A, 61.
Paulk, M. C., Curtis, B., Chrissis, M. B., and We-
ber, C. V. (1993). Capability maturity model for
software, version 1.1. software engineering institute.
Technical report, CMU/SEI-93-TR-24, DTIC Number
ADA263403.
Pereira, D., Almeida, M., Fac
˜
ao, M., Pinto, A. N., and Silva,
N. A. (2021). Impact of receiver imbalances on the
security of continuous variables quantum key distri-
bution. EPJ Quantum Technology, 8(1):1–12.
Pitwon, R. and Lee, B. H. (2021). Harmonising interna-
tional standards to promote commercial adoption of
quantum technologies. In Quantum Technology: Driv-
ing Commercialisation of an Enabling Science II, vol-
ume 11881, pages 53–62. SPIE.
Quantum Internet Research Group RG (2020). Quantum
internet research group charter. https://datatracker.ietf.
org/doc/charter-irtf-qirg/. Accessed 1.2.2023.
Shao, Y., Pan, Y., Wang, H., Pi, Y., Li, Y., Ma, L., Zhang, Y.,
Huang, W., and Xu, B. (2022). Polarization Attack on
Continuous-Variable Quantum Key Distribution with
a Local Local Oscillator. Entropy, 24(7):992.
Takahashi, R., Tanizawa, Y., and Dixon, A. (2019). A high-
speed key management method for quantum key dis-
tribution network. 2019 Eleventh International Con-
ference on Ubiquitous and Future Networks (ICUFN),
pages 437–442.
Tang, B.-Y., Liu, B., Zhai, Y.-P., Wu, C.-Q., and Yu, W.-R.
(2019). High-speed and Large-scale Privacy Amplifi-
cation Scheme for Quantum Key Distribution. Scien-
tific Reports, 9.
Tayduganov, A., Rodimin, V., Kiktenko, E. O., Kurochkin,
V., Krivoshein, E., Khanenkov, S., Usova, V., Stefa-
nenko, L., Kurochkin, Y., and Fedorov, A. (2021). Op-
timizing the deployment of quantum key distribution
switch-based networks. OPTICS EXPRESS, 29(16),
29(16):24884–24898.
Wang, L., Singhal, A., and Jajodia, S. (2007). Toward mea-
suring network security using attack graphs. In Pro-
ceedings of the 2007 ACM workshop on Quality of
protection, pages 49–54.
Wang, L.-J., Zhou, Y.-Y., Yin, J.-M., and Chen, Q. (2022).
Authentication of quantum key distribution with post-
quantum cryptography and replay attacks.
Working Group Quantum-safe Security. Cloud security
alliance. https://cloudsecurityalliance.org/research/
working-groups/quantum-safe-security/. Accessed
1.2.2023.
Yu, W., Zhao, B., and Yan, Z. (2017). Software defined
quantum key distribution network. 2017 3rd IEEE In-
ternational Conference on Computer and Communi-
cations (ICCC), pages 1293–1297.
APPENDIX
An overview of the mainstream international stan-
dardisation organisations and groups (ITU, ISO, IEC,
CENELEC, IEEE, and ETSI) developing standards
for quantum technologies is provided in (Pitwon and
Lee, 2021). They also identify the areas where the
standards will have the highest relevance without im-
peding future innovations. Although the standards
and recommendations published by the different or-
ganizations discuss the same theme, they present
slightly different views of the structures and main el-
ements of quantum key distribution networks.
Light Quantum Key Distribution Network Security Estimation Tool
595