bined with its user-friendly, responsive mobile inter-
face, proved it is suitable for usage by clinical profes-
sionals in real-world scenarios.
ACKNOWLEDGEMENTS
This work was done under the scope of Clini-
calWoundSupport - ”Wound Analysis to Support
Clinical Decision” project (POCI-01-0247-FEDER-
048922), according to Portugal 2020 is co-funded
by the European Regional Development Fund from
European Union, framed in the COMPETE 2020.
The authors would like to thank Paula Teixeira from
Unidade Local de Sa
´
ude de Matosinhos for the col-
laboration in the data annotation process.
REFERENCES
(2021). TensorFlow 2 Detection Model Zoo. https://
github.com/tensorflow/models/blob/master/research/
object detection/g3doc/tf2 detection zoo.md.
(2022). Configuration settings for the mod-
els of the tensorflow object detection API.
https://github.com/tensorflow/models/tree/master/
research/object detection/configs/tf2.
Anisuzzaman, D., Patel, Y., Niezgoda, J. A., Gopalakr-
ishnan, S., and Yu, Z. (2022a). A mobile app for
wound localization using deep learning. IEEE Access,
10:61398–61409.
Anisuzzaman, D., Wang, C., Rostami, B., Gopalakrishnan,
S., Niezgoda, J., and Yu, Z. (2022b). Image-based
artificial intelligence in wound assessment: A system-
atic review. Advances in Wound Care, 11(12):687–
709.
Bengio, Y. (2012). Practical recommendations for gradient-
based training of deep architectures. In Neural net-
works: Tricks of the trade, pages 437–478. Springer.
Chen, L., Cheng, L., Gao, W., Chen, D., Wang, C., Ran, X.,
et al. (2020). Telemedicine in chronic wound man-
agement: systematic review and meta-analysis. JMIR
mHealth and uHealth, 8(6):e15574.
Cui, C., Thurnhofer-Hemsi, K., Soroushmehr, R., Mishra,
A., Gryak, J., Dom
´
ınguez, E., Najarian, K., and
L
´
opez-Rubio, E. (2019). Diabetic wound segmenta-
tion using convolutional neural networks. In 2019
41st Annual International Conference of the IEEE En-
gineering in Medicine and Biology Society (EMBC),
pages 1002–1005. IEEE.
Faria, J., Almeida, J., Vasconcelos, M. J. M., and Rosado, L.
(2020). Automated mobile image acquisition of skin
wounds using real-time deep neural networks. In Med-
ical Image Understanding and Analysis: 23rd Confer-
ence, MIUA 2019, Liverpool, UK, July 24–26, 2019,
Proceedings 23, pages 61–73. Springer.
Goyal, M., Reeves, N. D., Rajbhandari, S., and Yap, M. H.
(2018). Robust methods for real-time diabetic foot
ulcer detection and localization on mobile devices.
IEEE journal of biomedical and health informatics,
23(4):1730–1741.
Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A.,
Fathi, A., Fischer, I., Wojna, Z., Song, Y., Guadar-
rama, S., et al. (2017). Speed/accuracy trade-offs for
modern convolutional object detectors. In Proceed-
ings of the IEEE conference on computer vision and
pattern recognition, pages 7310–7311.
Lin, T., Goyal, P., Girshick, R., He, K., and Dollar, P.
(2018). Focal loss for dense object detection. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 42(2):318–327.
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Doll
´
ar, P., and Zitnick, C. L. (2014).
Microsoft coco: Common objects in context. In Euro-
pean conference on computer vision, pages 740–755.
Lu, H., Li, B., Zhu, J., Li, Y., Li, Y., Xu, X., He, L., Li,
X., Li, J., and Serikawa, S. (2017). Wound intensity
correction and segmentation with convolutional neu-
ral networks. Concurrency and computation: practice
and experience, 29(6):e3927.
Martinengo, L., Olsson, M., Bajpai, R., Soljak, M., Upton,
Z., Schmidtchen, A., Car, J., and J
¨
arbrink, K. (2019).
Prevalence of chronic wounds in the general popula-
tion: systematic review and meta-analysis of observa-
tional studies. Annals of epidemiology, 29:8–15.
Medetec (2014). Wound database. data re-
trieved from http://www.medetec.co.uk/files/
medetec-image-databases.html.
Mukherjee, R., Tewary, S., and Routray, A. (2017). Di-
agnostic and prognostic utility of non-invasive multi-
modal imaging in chronic wound monitoring: a sys-
tematic review. Journal of medical systems, 41:1–17.
Passadouro, R., Sousa, A., Santos, C., Costa, H., and
Craveiro, I. (2016). Characteristics and prevalence of
chronic wounds in primary health care. Journal of the
Portuguese Society of Dermatology and Venereology,
74(1):45–51.
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and
Chen, L.-C. (2018). Mobilenetv2: Inverted residu-
als and linear bottlenecks. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 4510–4520.
Scebba, G., Zhang, J., Catanzaro, S., Mihai, C., Dis-
tler, O., Berli, M., and Karlen, W. (2022). Detect-
and-segment: A deep learning approach to automate
wound image segmentation. Informatics in Medicine
Unlocked, 29:100884.
Sen, C. K. (2021). Human wound and its burden: updated
2020 compendium of estimates. advances in wound
care, 10(5):281–292.
Werdin, F., Tennenhaus, M., Schaller, H.-E., and Ren-
nekampff, H.-O. (2009). Evidence-based manage-
ment strategies for treatment of chronic wounds.
Eplasty, 9.
Yang, S., Park, J., Lee, H., Kim, S., Lee, B.-U., Chung,
K.-Y., and Oh, B. (2016). Sequential change of
wound calculated by image analysis using a color
patch method during a secondary intention healing.
PloS one, 11(9):e0163092.
Leveraging Deep Neural Networks for Automatic and Standardised Wound Image Acquisition
261