Hunter, F. D. L., Mitchard, E. T. A., Tyrrell, P., & Russell,
S. (2020). Inter-seasonal time series imagery enhances
classification accuracy of grazing resource and land
degradation maps in a savanna ecosystem. Remote
Sensing, 12(1), 198. https://doi.org/10.3390/RS12010
198
Kløve, B., Ala-Aho, P., Bertrand, G., Gurdak, J. J.,
Kupfersberger, H., Kværner, J., Muotka, T., Mykrä, H.,
Preda, E., Rossi, P., Uvo, C. B., Velasco, E., & Pulido-
Velazquez, M. (2014). Climate change impacts on
groundwater and dependent ecosystems. Journal of
Hydrology, 518(PB), 250–266. https://doi.org/10.1016/
J.JHYDROL.2013.06.037
Kuenzer, C., Ottinger, M., Wegmann, M., Guo, H., Wang,
C., Zhang, J., Dech, S., & Wikelski, M. (2014). Earth
observation satellite sensors for biodiversity
monitoring: potentials and bottlenecks. In International
Journal of Remote Sensing (Vol. 35, Issue 18, pp.
6599–6647). Taylor and Francis Ltd. https://doi.org/
10.1080/01431161.2014.964349
Kundu, S., Pal, S., Mandal, I., & Talukdar, S. (2022). How
far damming induced wetland fragmentation and water
richness change affect wetland ecosystem services?
Remote Sensing Applications: Society and
Environment, 27, 100777. https://doi.org/10.1016/
j.rsase.2022.100777
Liang, S., & Wang, J. (2019). Advanced remote sensing:
Terrestrial information extraction and applications.
Advanced Remote Sensing: Terrestrial Information
Extraction and Applications, 1–986. https://doi.org/
10.1016/C2017-0-03489-4
Mallinis, G., Chrysafis, I., Korakis, G., Pana, E., &
Kyriazopoulos, A. P. (2020). A random forest
modelling procedure for a multi-sensor assessment of
tree species diversity. Remote Sensing, 12(7), 1210.
https://doi.org/10.3390/rs12071210
Meddens, A. J. H., Steen-Adams, M. M., Hudak, A. T.,
Mauro, F., Byassee, P. M., & Strunk, J. (2022).
Specifying geospatial data product characteristics for
forest and fuel management applications.
Environmental Research Letters, 17(4). https://doi.org/
10.1088/1748-9326/ac5ee0
Mendes, M. P., Paralta, E., Batista, S., & Cerejeira, M. J.
(2015). Vulnerabilidade, monitorização e risco na zona
vulnerável do Tejo. 8
o
Congresso Da Água.
Mendonça, J. J. L. (1990). Estudo Estatístico dos
Parâmetros Hidráulicos do Sistema Aquífero Aluvionar
do Tejo.
Mpakairi, K. S., Dube, T., Dondofema, F., & Dalu, T.
(2022). Spatio–temporal variation of vegetation
heterogeneity in groundwater dependent ecosystems
within arid environments. Ecological Informatics, 69,
101667. https://doi.org/10.1016/j.ecoinf.2022.101667
Novo, M. E., Oliveira, M., Martins, T., & Henriques, M. J.
(2018). Projecto Bingo: O Impacto das Alterações
Climáticas na Componente Subterrânea do Ciclo
Hidrológico. Revista Recursos Hídricos, 39(2), 59–74.
https://doi.org/10.5894/rh39n2-cti3
Nti, E. K., Cobbina, S. J., Attafuah, E. E., Opoku, E., &
Gyan, M. A. (2022). Environmental sustainability
technologies in biodiversity, energy, transportation and
water management using artificial intelligence: A
systematic review. Sustainable Futures, 4, 100068.
https://doi.org/10.1016/J.SFTR.2022.100068
Osborne, P. E., & Alvares-Sanches, T. (2019). Quantifying
how landscape composition and configuration affect
urban land surface temperatures using machine learning
and neutral landscapes. Computers, Environment and
Urban Systems, 76, 80–90. https://doi.org/10.1016/
j.compenvurbsys.2019.04.003
Ramos, T. B., Horta, A., Gonçalves, M. C., Pires, F. P.,
Duffy, D., & Martins, J. C. (2017). The INFOSOLO
database as a first step towards the development of a
soil information system in Portugal. Catena, 158(July),
390–412. https://doi.org/10.1016/j.catena.2017.07.020
Ribeiro, M. M. S. (1998). Contribuição para o
conhecimento hidrogeológico do Cenozóico na Bacia
do Baixo Tejo.
Ringersma, J., Batjes, N., & Dent, D. (2003). Green Water:
definitions and data for assessment. ISRIC – World Soil
Information, December, 83.
Sharma, A., Hubert-Moy, L., Buvaneshwari, S., Sekhar,
M., Ruiz, L., Bandyopadhyay, S., & Corgne, S. (2018).
Irrigation History Estimation Using Multitemporal
Landsat Satellite Images: Application to an Intensive
Groundwater Irrigated Agricultural Watershed in India.
Remote Sensing, 10(6), 893. https://doi.org/10.3390/
rs10060893
Shi, H., Li, L., Eamus, D., Cleverly, J., Huete, A., Beringer,
J., Yu, Q., Van Gorsel, E., & Hutley, L. (2014). Intrinsic
climate dependency of ecosystem light and water-use-
efficiencies across Australian biomes. Environmental
Research Letters, 9(10). https://doi.org/10.1088/1748-
9326/9/10/104002
Trabucco, A., & Zomer, R. (2019). Global Aridity Index
and Potential Evapotranspiration (ET0) Climate
Database v2. https://doi.org/10.6084/m9.figshare.750
4448.v3
Yang, X., Liu, S., Jia, C., Liu, Y., & Yu, C. (2021).
Vulnerability assessment and management planning for
the ecological environment in urban wetlands. Journal
of Environmental Management, 298, 113540.
https://doi.org/10.1016/j.jenvman.2021.113540
Zhang, J., Okin, G. S., & Zhou, B. (2019). Assimilating
optical satellite remote sensing images and field data to
predict surface indicators
in the Western U.S.:
Assessing error in satellite predictions based on
large geographical datasets with the use of
machine learning. Remote Sensing of Environment,
233, 111382. https://doi.org/10.1016/j.rse.2019.111382