REFERENCES
Akbari, A. and Gabdulhakov, R. (2019). Platform surveil-
lance and resistance in iran and russia: The case of
telegram. Surveillance & Society, 17:223–231.
Baumgartner, J., Zannettou, S., Squire, M., and Blackburn,
J. (2020). The pushshift telegram dataset. In Proceed-
ings of the International AAAI Conference on Web and
Social Media, volume 14, pages 840–847.
Cabral, L., Monteiro, J. M., da Silva, J. W. F., Mattos, C.
L. C., and Mourão, P. J. C. (2021). Fakewhastapp.br:
NLP and machine learning techniques for misinfor-
mation detection in brazilian portuguese whatsapp
messages. In Filipe, J., Smialek, M., Brodsky, A.,
and Hammoudi, S., editors, Proceedings of the 23rd
International Conference on Enterprise Information
Systems, ICEIS 2021, Online Streaming, April 26-28,
2021, Volume 1, pages 63–74. SCITEPRESS.
Dargahi Nobari, A., Reshadatmand, N., and Neshati, M.
(2017). Analysis of telegram, an instant messaging
service. In Proceedings of the 2017 ACM on Con-
ference on Information and Knowledge Management,
pages 2035–2038.
de Paz, A., Suárez, M., Palmero, S., Degli-Esposti, S., and
Arroyo, D. (2022). Following negationists on twitter
and telegram: Application of ncd to the analysis of
multiplatform misinformation dynamics. In Proceed-
ings of the International Conference on Ubiquitous
Computing & Ambient Intelligence (UCAmI 2022),
pages 1110–1116. Springer.
de Paz, A., Suárez, M., Palmero, S., Degli-Esposti, S., and
Arroyo, D. (2023). Following negationists on twit-
ter and telegram: Application of ncd to the analysis
of multiplatform misinformation dynamics. In Bravo,
J., Ochoa, S., and Favela, J., editors, Proceedings
of the International Conference on Ubiquitous Com-
puting & Ambient Intelligence (UCAmI 2022), pages
1110–1116, Cham. Springer International Publishing.
de Sá, I. C., Monteiro, J. M., da Silva, J. W. F., Medeiros,
L. M., Mourão, P. J. C., and da Cunha, L. C. C.
(2021). Digital lighthouse: A platform for monitor-
ing public groups in whatsapp. In Filipe, J., Smi-
alek, M., Brodsky, A., and Hammoudi, S., editors,
Proceedings of the 23rd International Conference on
Enterprise Information Systems, ICEIS 2021, Online
Streaming, April 26-28, 2021, Volume 1, pages 297–
304. SCITEPRESS.
Hashemi, A. and Chahooki, M. A. Z. (2019). Telegram
group quality measurement by user behavior analysis.
Social Network Analysis and Mining, 9:1–12.
Herasimenka, A., Bright, J., Knuutila, A., and Howard,
P. N. (2022). Misinformation and professional news
on largely unmoderated platforms: the case of tele-
gram. Journal of Information Technology & Politics,
0(0):1–15.
Júnior, M., Melo, P., da Silva, A. P. C., Benevenuto, F., and
Almeida, J. (2021). Towards understanding the use
of telegram by political groups in brazil. In Proceed-
ings of the Brazilian Symposium on Multimedia and
the Web, pages 237–244.
Júnior, M., Melo, P. F., Kansaon, D., Mafra, V., Sá, K.,
and Benevenuto, F. (2022a). Telegram monitor: Mon-
itoring brazilian political groups and channels on tele-
gram. CoRR, abs/2202.04737.
Júnior, M., Melo, P. F., Kansaon, D., Mafra, V., Sá, K., and
Benevenuto, F. (2022b). Telegram monitor: Moni-
toring brazilian political groups and channels on tele-
gram. In Bellogín, A., Boratto, L., and Cena, F., edi-
tors, HT ’22: 33rd ACM Conference on Hypertext and
Social Media, Barcelona, Spain, 28 June 2022- 1 July
2022, pages 228–231. ACM.
Khaund, T., Hussain, M. N., Shaik, M., and Agarwal,
N. (2021). Telegram: Data collection, opportunities
and challenges. In Lossio-Ventura, J. A., Valverde-
Rebaza, J. C., Díaz, E., and Alatrista-Salas, H., ed-
itors, Information Management and Big Data, pages
513–526, Cham. Springer International Publishing.
Martins, A. D. F., Cabral, L., Mourão, P. J. C., Monteiro,
J. M., and Machado, J. (2021a). Detection of misinfor-
mation about covid-19 in brazilian portuguese what-
sapp messages. In International Conference on Appli-
cations of Natural Language to Information Systems,
pages 199–206. Springer.
Martins, A. D. F., da Cunha, L. C. C., Mourão, P. J. C.,
de Sá, I. C., Monteiro, J. M., and de Castro Machado,
J. (2021b). Covid19.br: A dataset of misinformation
about covid-19 in brazilian portuguese whatsapp mes-
sages. In III Dataset Showcase Workshop, DSW 2021,
Rio de Janeiro, RJ, Brazil, October 4-8, 2021 (To ap-
pear). SBC.
Martins, A. D. F., Monteiro, J. M., and Machado, J. C.
(2022). Understanding misinformation about COVID-
19 in whatsapp messages. In Chiusano, S., Cerquitelli,
T., Wrembel, R., Nørvåg, K., Catania, B., Vargas-
Solar, G., and Zumpano, E., editors, New Trends
in Database and Information Systems - ADBIS 2022
Short Papers, Doctoral Consortium and Workshops:
DOING, K-GALS, MADEISD, MegaData, SWODCH,
Turin, Italy, September 5-8, 2022, Proceedings, vol-
ume 1652 of Communications in Computer and Infor-
mation Science, pages 14–23. Springer.
Ng, L. H. X. and Loke, J. Y. (2021). Analyzing public opin-
ion and misinformation in a covid-19 telegram group
chat. IEEE Internet Computing, 25(2):84–91.
Nobari, A. D., Sarraf, M. H. K. M., Neshati, M., and
Daneshvar, F. E. (2021). Characteristics of viral mes-
sages on telegram; the world’s largest hybrid public
and private messenger. Expert systems with applica-
tions, 168:114303.
Paschalides, D., Stephanidis, D., Andreou, A., Orphanou,
K., Pallis, G., Dikaiakos, M. D., and Markatos, E.
(2020). Mandola: A big-data processing and visu-
alization platform for monitoring and detecting online
hate speech. ACM Trans. Internet Technol., 20(2).
Silva, M. and Benevenuto, F. (2021). COVID-19 ads as po-
litical weapon. In Hung, C., Hong, J., Bechini, A., and
Song, E., editors, SAC ’21: The 36th ACM/SIGAPP
Symposium on Applied Computing, Virtual Event, Re-
public of Korea, March 22-26, 2021, pages 1705–
1710. ACM.
ICEIS 2023 - 25th International Conference on Enterprise Information Systems
278