ness process optimization. In Abramowicz, W. and
Kokkinaki, A., editors, Business Information Systems,
pages 25–37, Cham. Springer International Publish-
ing.
Haisjackl, C. and Weber, B. (2011). User assistance during
process execution - an experimental evaluation of rec-
ommendation strategies. In zur Muehlen, M. and Su,
J., editors, Business Process Management Workshops,
pages 134–145, Berlin, Heidelberg. Springer.
Harzing, A. (2007). Publish or perish. Sofware. available
from https://harzing.com/resources/publish-or-perish.
Huber, S., Fietta, M., and Hof, S. (2015). Next step recom-
mendation and prediction based on process mining in
adaptive case management. In Proceedings of the 7th
International Conference on Subject-Oriented Busi-
ness Process Management, S-BPM ONE ’15, New
York, NY, USA. Association for Computing Machin-
ery.
Jablonski, S. and Bussler, C. (1996). Workflow Manage-
ment: Modeling Concepts, Architecture, and Imple-
mentation. Cengage Learning.
Khan, A., Le, H., Do, K., Tran, T., Ghose, A., Dam, H.,
and Sindhgatta, R. (2021). Deepprocess: Support-
ing business process execution using a mann-based
recommender system. In Hacid, H., Kao, O., Me-
cella, M., Moha, N., and Paik, H.-y., editors, Service-
Oriented Computing, pages 19–33, Cham. Springer
International Publishing.
Kitchenham, B. A. and Charters, S. (2007). Guidelines for
performing systematic literature reviews in software
engineering. Technical Report EBSE 2007-001, Keele
University and Durham University Joint Report.
Koulopolous, T. M. (1995). The Workflow Imperative:
Building Real World Business Solutions. John Wiley
& Sons, Inc.
Kubrak, K., Milani, F., Nolte, A., and Dumas, M. (2021).
Prescriptive process monitoring: Quo vadis? CoRR,
abs/2112.01769.
Lawrence, P. (1997). Workflow Handbook.
Leoni, M. d., Dees, M., and Reulink, L. (2020). Design and
evaluation of a process-aware recommender system
based on prescriptive analytics. In 2020 2nd Interna-
tional Conference on Process Mining (ICPM), pages
9–16. IEEE.
Liu, Q. and Wu, B. (2018). Prediction of business process
outcome based on historical log. In Proceedings of the
10th International Conference on Computer Model-
ing and Simulation, ICCMS ’18, page 118–122, New
York, NY, USA. Association for Computing Machin-
ery.
Mertens, S., Gailly, F., and Poels, G. (2015). Generating
business process recommendations with a population-
based meta-heuristic. In Fournier, F. and Mendling,
J., editors, Business Process Management Workshops,
pages 516–528, Cham. Springer International Pub-
lishing.
Microsoft Corporation (2022). Microsoft excel.
Okoli, C. and Schabram, K. (2010). A guide to conducting
a systematic literature review of information systems
research. SSRN Electronic Journal, 10.
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron,
I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L.,
Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou,
R., Glanville, J., Grimshaw, J. M., Hr
´
objartsson, A.,
Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E.,
McDonald, S., McGuinness, L. A., Stewart, L. A.,
Thomas, J., Tricco, A. C., Welch, V. A., Whiting, P.,
and Moher, D. (2021). The prisma 2020 statement:
an updated guideline for reporting systematic reviews.
BMJ, 372.
Petter, S., Fichtner, M., Sch
¨
onig, S., and Jablonski, S.
(2022). Content-based filtering for worklist reorder-
ing to improve user satisfaction : A position paper.
In Proceedings of the 24th International Conference
on Enterprise Information Systems. Volume 2, pages
589–596. SciTePress, Portugal.
Pika, A. and Wynn, M. (2021). A machine learning based
approach for recommending unfamiliar process activ-
ities. IEEE Access, 9:104969–104979.
Pika, A. and Wynn, M. T. (2020). Workforce upskilling: A
history-based approach for recommending unfamiliar
process activities. In Dustdar, S., Yu, E., Salinesi, C.,
Rieu, D., and Pant, V., editors, Advanced Information
Systems Engineering, pages 334–349, Cham. Springer
International Publishing.
Reichert, M. and Weber, B. (2012). Enabling Flexibility
in Process-Aware Information Systems: Challenges,
Methods, Technologies. Springer.
Schobel, J. and Reichert, M. (2017). A Predictive Approach
Enabling Process Execution Recommendations, pages
155–170. Springer International Publishing, Cham.
Schonenberg, H., Weber, B., van Dongen, B., and van der
Aalst, W. (2008). Supporting flexible processes
through recommendations based on history. In Du-
mas, M., Reichert, M., and Shan, M.-C., editors, Busi-
ness Process Management, pages 51–66, Berlin, Hei-
delberg. Springer.
Setiawan, M. A. and Sadiq, S. (2011). Experience driven
process improvement. In Halpin, T., Nurcan, S.,
Krogstie, J., Soffer, P., Proper, E., Schmidt, R., and
Bider, I., editors, Enterprise, Business-Process and
Information Systems Modeling, pages 75–87, Berlin,
Heidelberg. Springer.
Setiawan, M. A., Sadiq, S., and Kirkman, R. (2011). Facili-
tating business process improvement through person-
alized recommendation. In Abramowicz, W., editor,
Business Information Systems, pages 136–147, Berlin,
Heidelberg. Springer.
Trabelsi, F. Z., Khtira, A., and El Asri, B. (2021). Towards
an approach of recommendation in business processes
using decision trees. In 2021 International Symposium
on Computer Science and Intelligent Controls (ISC-
SIC), pages 341–347. IEEE.
van der Aalst, W. (2016). Process Mining: Data Science in
Action. Springer, 2 edition.
van der Aalst, W. M. P., Pesic, M., and Song, M. (2010). Be-
yond process mining: From the past to present and fu-
ture. In Pernici, B., editor, Advanced Information Sys-
tems Engineering, pages 38–52, Berlin, Heidelberg.
Springer.
Recommender Systems in Business Process Management: A Systematic Literature Review
441