Loshchilov, I., & Hutter, F. (2019). Decoupled weight
decay regularization. 7th International Conference on
Learning Representations, ICLR 2019.
Naik, R. B., & Kunchur, P. N. (2020). Image Fusion Based
on Wavelet Transformation. International Journal of
Engineering and Advanced Technology, 9(5), 473–477.
https://doi.org/10.35940/ijeat.D9161.069520
Sebastian, A., Elharrouss, O., Al-Maadeed, S., &
Almaadeed, N. (2023). A Survey on Deep-Learning-
Based Diabetic Retinopathy Classification.
Diagnostics, 13(3), 345. https://doi.org/10.3390/
diagnostics13030345
Shahriar Maswood, M. M., Hussain, T., Khan, M. B., Islam,
M. T., & Alharbi, A. G. (2020). CNN Based Detection
of the Severity of Diabetic Retinopathy from the
Fundus Photography using EfficientNet-B5. 11th
Annual IEEE Information Technology, Electronics and
Mobile Communication Conference, IEMCON 2020,
147–150. https://doi.org/10.1109/IEMCON51383.202
0.9284944
Song, J., Zheng, Y., Wang, J., Zakir Ullah, M., & Jiao, W.
(2021). Multicolor image classification using the
multimodal information bottleneck network (MMIB-
Net) for detecting diabetic retinopathy. Optics Express,
29(14), 22732. https://doi.org/10.1364/oe.430508
Sun, R., Li, Y., Zhang, T., Mao, Z., Wu, F., & Zhang, Y.
(2021). Lesion-Aware Transformers for Diabetic
Retinopathy Grading. Proceedings of the IEEE
Computer Society Conference on Computer Vision and
Pattern Recognition, 10933–10942. https://doi.org/
10.1109/CVPR46437.2021.01079
Tan, M., & Le, Q. V. (2019). EfficientNet: Rethinking
Model Scaling for Convolutional Neural Networks.
36th International Conference on Machine Learning,
ICML 2019, 2019-June, 10691–10700. http://arxiv.
org/abs/1905.11946
Tantithamthavorn, C., McIntosh, S., Hassan, A. E., &
Matsumoto, K. (2019). The Impact of Automated
Parameter Optimization on Defect Prediction Models.
IEEE Transactions on Software Engineering, 45(7),
683–711. https://doi.org/10.1109/TSE.2018.2794977
Teo, Z. L., Tham, Y.-C., Yu, M., Chee, M. L., Rim, T. H.,
Cheung, N., Bikbov, M. M., Wang, Y. X., Tang, Y., Lu,
Y., Wong, I. Y., Ting, D. S. W., Tan, G. S. W., Jonas,
J. B., Sabanayagam, C., Wong, T. Y., & Cheng, C.-Y.
(2021). Global Prevalence of Diabetic Retinopathy and
Projection of Burden through 2045. Ophthalmology,
128(11), 1580–1591. https://doi.org/10.1016/j.ophtha.
2021.04.027
Tseng, V. S., Chen, C.-L., Liang, C.-M., Tai, M.-C., Liu, J.-
T., Wu, P.-Y., Deng, M.-S., Lee, Y.-W., Huang, T.-Y.,
& Chen, Y.-H. (2020). Leveraging Multimodal Deep
Learning Architecture with Retina Lesion Information
to Detect Diabetic Retinopathy. Translational Vision
Science & Technology, 9(2), 41. https://doi.org/10.
1167/tvst.9.2.41
Xie, C., Tan, M., Gong, B., Wang, J., Yuille, A. L., & Le,
Q. V. (2020). Adversarial examples improve image
recognition.
Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern
Recognition, 816–825. https://doi.org/10.1109/CVPR
42600.2020.00090
Yao, Z., Yuan, Y., Shi, Z., Mao, W., Zhu, G., Zhang, G., &
Wang, Z. (2022). FunSwin: A deep learning method to
analysis diabetic retinopathy grade and macular edema
risk based on fundus images. Frontiers in Physiology,
13(July), 1–9. https://doi.org/10.3389/fphys.2022.
961386
Yun, S., Han, D., Chun, S., Oh, S. J., Choe, J., & Yoo, Y.
(2019). CutMix: Regularization strategy to train strong
classifiers with localizable features. Proceedings of the
IEEE International Conference on Computer Vision,
2019-Octob, 6022–6031. https://doi.org/10.1109/ICCV
.2019.00612
Zhang, H., Cisse, M., Dauphin, Y. N., & Lopez-Paz, D.
(2018). MixUp: Beyond empirical risk minimization.
6th International Conference on Learning
Representations, ICLR 2018 - Conference Track
Proceedings, 1–13.