ACKNOWLEDGEMENTS
This paper was supported by the program Lider grant
nr 0005/L-11/2019 by the National Centre for
Research and Development, Poland.
REFERENCES
Bedont, P., Grillo, O., Massardo, A.F., 2003. Off-design
performance analysis of a hybrid system based on an
existing molten fuel cell stack. J. Eng. Gas Turbines
Power 125.
Chen, Q., Weng, Y., Zhu, X., Weng, S., 2006. Design and
Partial Load Performance of a Hybrid System Based on
a Molten Carbonate Fuel Cell and a Gas Turbine. Fuel
Cells 6.
Ding, J., Li, X., Cao, J., Sheng, L., Yin, L., Xu, X., 2014.
New sensor for gases dissolved in transformer oil based
on solid oxide fuel cell. Sensors Actuators, B Chem.
202, 232–239.
He, W., 1998. Dynamic Model for Molten Carbonate Fuel-
Cell Power-Generation Systems. Energy Convert.
Manag. 39, 775–783.
HYSYS.Plant Steady State Modelling, 1998.
Iora, P., Campanari, S., Salogni, A., 2010. Off-design
analysis of a MCFC-gas turbine hybrid plant.
Kang, B.S., Koh, J.-H., Lim, H.C., 2001. Experimental
study on the dynamic characteristics of {kW}-scale
molten carbonate fuel cell systems. J. Power Sources
94, 51–62.
Kawabata, M., Kurata, O., Iki, N., Tsutsumi, A., Furutani,
H., 2012. Advanced integrated gasification combined
cycle {(A-IGCC)} by exergy recuperation---Technical
challenges for future generations. J. Power Technol. 2,
90–100.
Milewski, J, Miller, A., 2012. Off-design analysis of MCFC
hybrid system. Rynek Energii 151–160.
Milewski, Jarosław, Miller, A., 2012. Triple-layer based
control strategy for molten carbonate fuel cell--hybrid
system. Chem. Process Eng. 445–461.
Milewski, J., Świercz, T., Badyda, K., Miller, A.,
Dmowski, A., Biczel, P., 2010. The control strategy for
a molten carbonate fuel cell hybrid system. Int. J.
Hydrogen Energy 35, 2997–3000.
Milewski, J., Wołowicz, M., Miller, A., Bernat, R.,
RafałBernat, 2013. A reduced order model of molten
carbonate fuel cell: A proposal. Int. J. Hydrogen Energy
38, 11565–11575. https://doi.org/10.1016/j.ijhydene.
2013.06.002
Ramandi, M.Y., Dincer, I., Berg, P., 2014. A transient
analysis of three-dimensional heat and mass transfer in
a molten carbonate fuel cell at start-up. Int. J. Hydrogen
Energy 39, 8034–8047.
Razbani, O., Assadi, M., 2014. Artificial neural network
model of a short stack solid oxide fuel cell based on
experimental data. J. Power Sources 246, 581–586.
https://doi.org/10.1016/j.jpowsour.2013.08.018
Sheng, M., Mangold, M., Kienle, A., 2006. A strategy for
the spatial temperature control of a molten carbonate
fuel cell system. J. Power Sources 162, 1213–1219.
Wee, J.-H., 2014. Carbon dioxide emission reduction using
molten carbonate fuel cell systems. Renew. Sustain.
Energy Rev. 32, 178–191.
Xu, H., Dang, Z., Bai, B.-F., 2014. Electrochemical
performance study of solid oxide fuel cell using lattice
Boltzmann method. Energy 67, 575–583.
Yang, C., Deng, K., He, H., Wu, H., Yao, K., Fan, Y., 2019.
Real-Time Interface Model Investigation for MCFC-
MGT HILS Hybrid Power System. ENERGIES 12.
https://doi.org/10.3390/en12112192.