aggregations around both back region of the aortic
valve and edges of the leaflets.
ACKNOWLEDGEMENTS
This work is funded by the Scientific and
Technological Research Council of Turkey
(TUBITAK) as ARDEB 1001 project under the grand
number 120M671. Computing resources used in this
work were provided by the National Center for High-
Performance Computing of Turkey (UHeM) under
grant number 5010662021.
REFERENCES
Bahler, R. C., Desser, D. R., Finkelhor, R. S., Brener, S. J.,
& Youssefi, M. (1999). Factors leading to progression
of valvular aortic stenosis. The American journal of
cardiology, 84(9), 1044-1048.
Colella, P., & Woodward, P. R. (1984). The piecewise
parabolic method (PPM) for gas-dynamical
simulations. Journal of computational physics, 54(1),
174-201.
Freeman, R. V., & Otto, C. M. (2005). Spectrum of calcific
aortic valve disease: pathogenesis, disease progression,
and treatment strategies. Circulation, 111(24), 3316-
3326.
Gilmanov, A., Barker, A., Stolarski, H., & Sotiropoulos, F.
(2019). Image-guided fluid-structure interaction
simulation of transvalvular hemodynamics:
Quantifying the effects of varying aortic valve leaflet
thickness. Fluids, 4(3), 119.
Griffith, B. E. (2009). An accurate and efficient method for
the incompressible Navier–Stokes equations using the
projection method as a preconditioner. Journal of
Computational Physics, 228(20), 7565-7595.
Griffith, B. E., & Luo, X. (2017). Hybrid finite
difference/finite element immersed boundary
method. International journal for numerical methods in
biomedical engineering, 33(12), e2888.
Halevi, R., Hamdan, A., Marom, G., Mega, M., Raanani,
E., & Haj-Ali, R. (2015). Progressive aortic valve
calcification: three-dimensional visualization and
biomechanical analysis. Journal of
biomechanics, 48(3), 489-497.
Halevi, R., Hamdan, A., Marom, G., Lavon, K., Ben-Zekry,
S., Raanani, E., ... & Haj-Ali, R. (2016). Fluid–structure
interaction modeling of calcific aortic valve disease
using patient-specific three-dimensional calcification
scans. Medical & biological engineering &
computing, 54, 1683-1694.
Halevi, R., Hamdan, A., Marom, G., Lavon, K., Ben-Zekry,
S., Raanani, E., & Haj-Ali, R. (2018). A new growth
model for aortic valve calcification. Journal of
Biomechanical Engineering, 140(10), 101008.
IBAMR. Immersed Boundary Method Adaptive Mesh
Refinement Software Infrastructure. Available at:
https://ibamr.github.io/. Accessed 10 January 2021.
Kappetein, A. P., Head, S. J., Généreux, P., Piazza, N., Van
Mieghem, N. M., Blackstone, E. H., ... & Leon, M. B.
(2013). Updated standardized endpoint definitions for
transcatheter aortic valve implantation: the Valve
Academic Research Consortium-2 consensus
document. The Journal of thoracic and cardiovascular
surgery, 145(1), 6-23.
Lavon, K., Marom, G., Bianchi, M., Halevi, R., Hamdan,
A., Morany, A., ... & Haj-Ali, R. (2019). Biomechanical
modeling of transcatheter aortic valve replacement in a
stenotic bicuspid aortic valve: deployments and
paravalvular leakage. Medical & biological
engineering & computing, 57, 2129-2143.
Luraghi, G., Matas, J. F. R., Beretta, M., Chiozzi, N., Iannetti,
L., & Migliavacca, F. (2020). The impact of calcification
patterns in transcatheter aortic valve performance: a
fluid-structure interaction analysis. Computer Methods
in Biomechanics and Biomedical Engineering, 24(4),
375-383.
Nudel, I. (2015). Characterization of the Mechanical
Anisotropic Behavior of the Aortic Valve Leaflets. Ben-
Gurion University of the Negev, Faculty of Engineering
Sciences, Department of Biomedical Engineering.
Oks, D., Samaniego, C., Houzeaux, G., Butakoff, C., &
Vázquez, M. (2022). Fluid–structure interaction
analysis of eccentricity and leaflet rigidity on
thrombosis biomarkers in bioprosthetic aortic valve
replacements. International Journal for Numerical
Methods in Biomedical Engineering, 38(12), e3649.
Otto, C. M. (2008). Calcific aortic stenosis—time to look
more closely at the valve. New England Journal of
Medicine, 359(13), 1395-1398.
Pandya, A. (2012). Optimizing Cardiovascular Disease
Screening and Projection Efforts in the United
States (Doctoral dissertation, Harvard University).
Rubenstein, D., Yin, W., & Frame, M. D. (2015). Biofluid
mechanics: an introduction to fluid mechanics,
macrocirculation, and microcirculation. Academic
Press.
Sadrabadi, M. S., Hedayat, M., Borazjani, I., & Arzani, A.
(2021). Fluid-structure coupled biotransport processes
in aortic valve disease. Journal of Biomechanics, 117,
110239.
Spühler, J. H., Jansson, J., Jansson, N., & Hoffman, J.
(2018). 3D fluid-structure interaction simulation of
aortic valves using a unified continuum ALE FEM
model. Frontiers in physiology, 9, 363.
Thubrikar, M. J., Aouad, J., & Nolan, S. P. (1986). Patterns
of calcific deposits in operatively excised stenotic or
purely regurgitant aortic valves and their relation to
mechanical stress. The American journal of
cardiology, 58(3), 304-308.
Thubrikar MJ (1990) The aortic valve. CRC Press Inc.,
Boca Raton
Wang, R., 2015. GrabCAD - CAD library. Grabcad.com.
Available at: <https://grabcad.com/ library/aorta-aortic-
valve-1> [Accessed 01 January 2021].