constrained IoT devices. ACM Trans. Internet Things,
1(3):1–29.
Aramini, A., Arazzi, M., Facchinetti, T., Ngankem, L. S.
Q. N., and Nocera, A. (2022). An enhanced behavioral
fingerprinting approach for the internet of things. In
IEEE 18th International Conference on Factory Com-
munication Systems, pages 1–8.
Bezawada, B., Bachani, M., Peterson, J., Shirazi, H., Ray,
I., and Ray, I. (2018). Behavioral fingerprinting of
IoT devices. In Workshop on Attacks and Solutions in
Hardware Security, page 41–50.
Breiman, L. (2001). Random forests. Machine Learning,
45(1):5–32.
Chakraborty, B., Divakaran, D. M., Nevat, I., Peters, G. W.,
and Gurusamy, M. (2021). Cost-aware feature selec-
tion for IoT device classification. IEEE Internet of
Things Journal, 8(14):11052–11064.
Hamad, S. A., Zhang, W. E., Sheng, Q. Z., and Nepal, S.
(2019). IoT device identification via network-flow
based fingerprinting and learning. In 18th IEEE Int.
Conf. On Trust, Security And Privacy In Computing
And Communications/13th IEEE Int. Conf. On Big
Data Science And Engineering), pages 103–111.
He, X., Yang, Y., Zhou, W., Wang, W., Liu, P., and Zhang,
Y. (2022). Fingerprinting mainstream IoT platforms
using traffic analysis. IEEE Internet of Things Jour-
nal, 9(3):2083–2093.
Jiao, R., Liu, Z., Liu, L., Ge, C., and Hancke, G. (2021).
Multi-level IoT device identification. In IEEE 27th
Int. Conf. on Parallel and Distributed Systems, pages
538–547.
Khandait, P., Hubballi, N., and Mazumdar, B. (2021).
IoTHunter: IoT network traffic classification using
device specific keywords. IET Networks Journal,
10(2):59–75.
Kostas, K., Just, M., and Lones, M. A. (2022). IoTDevID:
A behavior-based device identification method for the
IoT. IEEE Internet of Things Journal, 9(23):23741–
23749.
Kurmi, J. and Matam, R. (2022). Device identification
in IoT networks using network trace fingerprinting.
In Int. Conf. on Smart Applications, Communications
and Networking, pages 1–6.
Kuzniar, C., Neves, M., Gurevich, V., and Haque, I. (2022).
IoT device fingerprinting on commodity switches.
In NOMS 2022-2022 IEEE/IFIP Network Operations
and Management Symposium, pages 1–9.
Li, B. and Cetin, E. (2021). Design and evaluation of a
graphical deep learning approach for rf fingerprinting.
IEEE Sensors Journal, 21(17):19462–19468.
Lorenz, F., Thamsen, L., Wilke, A., Behnke, I., Waldm
¨
uller-
Littke, J., Komarov, I., Kao, O., and Paeschke, M.
(2020). Fingerprinting analog IoT sensors for secret-
free authentication. In 29th Int. Conf. on Comp. Com-
munications and Networks, pages 1–6.
Ma, X., Qu, J., Li, J., Lui, J. C. S., Li, Z., Liu, W., and Guan,
X. (2022). Inferring hidden IoT devices and user in-
teractions via spatial-temporal traffic fingerprinting.
IEEE/ACM Trans. on Networking, 30(1):394–408.
Miettinen, M., Marchal, S., Hafeez, I., Asokan, N., Sadeghi,
A., and Tarkoma, S. (2017). IoT SENTINEL: Auto-
mated device-type identification for security enforce-
ment in IoT. In IEEE 37th Int. Conf. on Distributed
Computing Systems, pages 2177–2184.
Quinlan, J. (1987). Simplifying decision trees. Int. Journal
of Man-Machine Studies, 27(3):221–234.
Ren, Z., Ren, P., and Zhang, T. (2022). Deep rf de-
vice fingerprinting by semi-supervised learning with
meta pseudo time-frequency labels. In IEEE Wireless
Communications and Networking Conference, pages
2369–2374.
Sivanathan, A., Gharakheili, H. H., Loi, F., Radford, A.,
Wijenayake, C., Vishwanath, A., and Sivaraman, V.
(2019). Classifying IoT devices in smart environments
using network traffic characteristics. IEEE Trans. on
Mobile Computing, 18(8):1745–1759.
Sivanathan, A., Sherratt, D., Gharakheili, H. H., Radford,
A., Wijenayake, C., Vishwanath, A., and Sivaraman,
V. (2017). Characterizing and classifying IoT traf-
fic in smart cities and campuses. In IEEE Confer-
ence on Computer Communications Workshops (IN-
FOCOM WKSHPS), pages 559–564.
Thangavelu, V., Divakaran, D. M., Sairam, R., Bhunia,
S. S., and Gurusamy, M. (2019). DEFT: A distributed
IoT fingerprinting technique. IEEE Internet of Things
Journal, 6(1):940–952.
Thom, J., Thom, N., Sengupta, S., and Hand, E. (2022).
Smart recon: Network traffic fingerprinting for IoT
device identification. In IEEE 12th Annual Comput-
ing and Communication Workshop and Conf., pages
0072–0079.
Wan, S., Li, Q., Wang, H., Li, H., and Sun, L. (2022).
Devtag: A benchmark for fingerprinting IoT devices.
IEEE Internet of Things Journal, 10(7):6388–6399.
Wanode, S. S., Anand, M., and Mitra, B. (2022). Opti-
mal feature set selection for IoT device fingerprinting
on edge infrastructure using machine intelligence. In
IEEE INFOCOM 2022 - IEEE Conference on Com-
puter Communications Workshops (INFOCOM WK-
SHPS), pages 1–6.
Yadav, P., Feraudo, A., Arief, B., Shahandashti, S. F., and
Vassilakis, V. G. (2020). Position paper: A systematic
framework for categorising IoT device fingerprinting
mechanisms. In 2nd Int. Workshop on Challenges in
Artificial Intelligence and Machine Learning for In-
ternet of Things, pages 62–68.
Yan, Z., Li, Z., Li, H., Yang, S., Zhu, H., and Sun, L. (2022).
Internet-scale fingerprinting the reusing and rebrand-
ing IoT devices in the cyberspace. IEEE Trans. on
Dependable and Secure Computing, pages 1–18.
SECRYPT 2023 - 20th International Conference on Security and Cryptography
344