mission to clients. The results demonstrate NAISS’s
efficacy in filtering stegoimages with minimal loading
time impact. However, NAISS may still encounter se-
curity and deployment challenges, necessitating fur-
ther research to assess its scalability and practicality
in real-world settings and enhance its design.
REFERENCES
Adalier, M. and Teknik, A. (2015). Efficient and secure
elliptic curve cryptography implementation of curve
p-256. In Workshop on elliptic curve cryptography
standards, volume 66, pages 2014–2017.
Aljofey, A., Jiang, Q., Rasool, A., Chen, H., Liu, W., Qu,
Q., and Wang, Y. (2022). An effective detection ap-
proach for phishing websites using url and html fea-
tures. Scientific Reports, 12(1):1–19.
Bower, T., Maffeis, S., and Demetriou, S. (2019). Identify-
ing javascript skimmers on high-value websites. Im-
perial College of Science, Technology and Medicine,
Imperial College London, pages 1–72.
Clapp, K. (2022). Commodity skimming & magecart trends
in first quarter of 2022. https://community.riskiq.com
/article/017cf2e6.
FBI (2019). Oregon fbi tech tuesday: Building a digital
defense against e-skimming. https://www.fbi.gov/co
ntact-us/field-offices/portland/news/press-releases/or
egon-fbi-tech-tuesday-building-a-digital-defense-a
gaist-e-skimming.
Fryer, H., Stalla-Bourdillon, S., and Chown, T. (2015). Ma-
licious web pages: What if hosting providers could
actually do something. Computer Law & Security Re-
view, 31(4):490–505.
Gebre, M. T., Lhee, K.-S., and Hong, M. (2010). A robust
defense against content-sniffing xss attacks. In 6th In-
ternational Conference on Digital Content, Multime-
dia Technology and its Applications, pages 315–320.
github/peepw (2017). GitHub - peewpw/Invoke-PSImage:
Encodes a PowerShell script in the pixels of a PNG
file and generates a oneliner to execute — github.com.
https://github.com/peewpw/Invoke-PSImage.
github/tlsfuzzer (2010). GitHub - tlsfuzzer/python-
ecdsa: pure-python ECDSA signature/verification and
ECDH key agreement — github.com. https://github.c
om/tlsfuzzer/python-ecdsa.
Gupta, S. and Gupta, B. B. (2016). Js-san: defense
mechanism for html5-based web applications against
javascript code injection vulnerabilities. Security and
Communication Networks, 9(11):1477–1495.
Hiremath, P. N. (2021). A novel approach for analyzing and
classifying malicious web pages. PhD thesis, Univer-
sity of Dayton.
Jamil, T. (1999). Steganography: the art of hiding informa-
tion in plain sight. IEEE potentials, 18(1):10–12.
Karapanos, N., Filios, A., Popa, R. A., and Capkun, S.
(2016). Verena: End-to-end integrity protection for
web applications. In 2016 IEEE Symposium on Secu-
rity and Privacy (SP), pages 895–913. IEEE.
Katz, J. (2010). Digital signatures, volume 1. Springer.
Keeling, W. (2018). GitHub - wkeeling/selenium-wire:
Extends Selenium’s Python bindings to give you the
ability to inspect requests made by the browser. —
github.com. https://github.com/wkeeling/selenium
-wire.
Leyden, J. (2022). Credit card industry standard revised to
repel card-skimmer attacks. https://portswigger.net/
daily-swig/credit-card-industry-standard-revised-t
o-repel-card-skimmer-attacks.
Lim, Z. X., Ho, X. Q., Tan, D. Z., and Goh, W. (2022).
Ensuring web integrity through content delivery net-
works. In 2022 IEEE World AI IoT Congress (AIIoT),
pages 494–500. IEEE.
MalwareBazaar (2022). Malwarebazaar magecart sample.
https://bazaar.abuse.ch/sample/f9274347590156c3e
86e\\b7015b6dbd3587de034c51cb52e5161cee671
c1107e4/.
Muralidharan, Trivikram, Aviad, Cohen, Assaf, Nissim, and
Nir (2022). The infinite race between steganography
and steganalysis in images. Signal Processing, page
108711.
P
¨
ohls, H. C. (2007). Authenticity and revocation of web
content using signed microformats and pki.
Rus, C. (2023). GitHub - ruscatalin/NAISS: Research
Project for NAISS: Network Authentication of Images
to Stop e-Skimmers — github.com. https://github.c
om/ruscatalin/NAISS.
W3C (2016). Subresource integrity. https://www.w3.org/T
R/SRI/.
Wiseman, S. (2017a). Content security through transforma-
tion. Computer Fraud & Security, 2017(9):5–10.
Wiseman, S. (2017b). Stegware–using steganography for
malicious purposes.
Zenkina, E. (2022). About current trends in global e-
commerce. BENEFICIUM , (1):68–73.
Zhang, K. A., Cuesta-Infante, A., and Veeramachaneni, K.
(2019). Steganogan: High capacity image steganog-
raphy with gans. arXiv preprint arXiv:1901.03892.
Zuppelli, M., Manco, G., Caviglione, L., and Guarascio, M.
(2021). Sanitization of images containing stegomal-
ware via machine learning approaches. In ITASEC,
pages 374–386.
Defeating MageCart Attacks in a NAISS Way
697