REFERENCES
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,
J., Devin, M., Ghemawat, S., Irving, G., Isard, M.,
et al. (2016). Tensorflow: a system for large-scale
machine learning. In Osdi, volume 16, pages 265–
283. Savannah, GA, USA.
Ahmed, M., Mahmood, A. N., and Hu, J. (2016). A survey
of network anomaly detection techniques. Journal of
Network and Computer Applications, 60:19–31.
Alimohammadi, H. and Chen, S. N. (2022). Perfor-
mance evaluation of outlier detection techniques in
production timeseries: A systematic review and
meta-analysis. Expert Systems with Applications,
191:116371.
Bl
´
azquez-Garc
´
ıa, A., Conde, A., Mori, U., and Lozano,
J. A. (2021). A review on outlier/anomaly detection
in time series data. ACM Computing Surveys (CSUR),
54(3):1–33.
Braei, M. and Wagner, S. (2020). Anomaly detection in
univariate time-series: A survey on the state-of-the-
art. arXiv preprint arXiv:2004.00433.
Chi, H., Zhang, Y., Tang, T. L. E., Mirabella, L., Dalloro,
L., Song, L., and Paulino, G. H. (2021). Universal
machine learning for topology optimization. Com-
puter Methods in Applied Mechanics and Engineer-
ing, 375:112739.
CNTK (2023). The microsoft cognitive toolkit is a unified
deep learning toolkit. https://github.com/microsoft/
CNTK. [Online; accessed 25-February-2023].
Deeplearning4j (2023). Introduction to core Deeplearning4j
concepts. https://deeplearning4j.konduit.ai/. [Online;
accessed 24-February-2023].
Deka, P. K., Verma, Y., Bhutto, A. B., Elmroth, E., and
Bhuyan, M. (2022). Semi-supervised range-based
anomaly detection for cloud systems. IEEE Transac-
tions on Network and Service Management.
EarlyStopping (2023). What is early stopping? https:
//deeplearning4j.konduit.ai/. [Online; accessed 24-
February-2023].
Eom, H., Figueiredo, R., Cai, H., Zhang, Y., and Huang,
G. (2015). Malmos: Machine learning-based mobile
offloading scheduler with online training. In 2015
3rd IEEE International Conference on Mobile Cloud
Computing, Services, and Engineering, pages 51–60.
IEEE.
Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8):1735–1780.
Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K.,
Dally, W. J., and Keutzer, K. (2016). Squeezenet:
Alexnet-level accuracy with 50x fewer parame-
ters and¡ 0.5 mb model size. arXiv preprint
arXiv:1602.07360.
Ibrahim, M., Badran, K. M., and Hussien, A. E. (2022).
Artificial intelligence-based approach for univari-
ate time-series anomaly detection using hybrid cnn-
bilstm model. In 2022 13th International Conference
on Electrical Engineering (ICEENG), pages 129–133.
IEEE.
Keras (2023). Keras - a deep learning API written in
python. https://keras.io/about/. [Online; accessed 25-
February-2023].
Ketkar, N. and Santana, E. (2017). Deep learning with
Python, volume 1. Springer.
Kieu, T., Yang, B., and Jensen, C. S. (2018). Outlier detec-
tion for multidimensional time series using deep neu-
ral networks. In 2018 19th IEEE international confer-
ence on mobile data management (MDM), pages 125–
134. IEEE.
Kovalev, V., Kalinovsky, A., and Kovalev, S. (2016). Deep
learning with theano, torch, caffe, tensorflow, and
deeplearning4j: Which one is the best in speed and
accuracy?
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). Im-
agenet classification with deep convolutional neural
networks. Communications of the ACM, 60(6):84–90.
Lavin, A. and Ahmad, S. (2015). Evaluating real-time
anomaly detection algorithms–the numenta anomaly
benchmark. In 2015 IEEE 14th international confer-
ence on machine learning and applications (ICMLA),
pages 38–44. IEEE.
Lee, M.-C. and Lin, J.-C. (2023). RePAD2: Real-time,
lightweight, and adaptive anomaly detection for open-
ended time series. In Proceedings of the 8th Inter-
national Conference on Internet of Things, Big Data
and Security - IoTBDS, pages 208–217. INSTICC,
SciTePress. arXiv preprint arXiv:2303.00409.
Lee, M.-C., Lin, J.-C., and Gan, E. G. (2020a). ReRe: A
lightweight real-time ready-to-go anomaly detection
approach for time series. In 2020 IEEE 44th Annual
Computers, Software, and Applications Conference
(COMPSAC), pages 322–327. IEEE. arXiv preprint
arXiv:2004.02319. The updated version of the ReRe
algorithm from arXiv was used here.
Lee, M.-C., Lin, J.-C., and Gran, E. G. (2020b). RePAD:
real-time proactive anomaly detection for time series.
In Advanced Information Networking and Applica-
tions: Proceedings of the 34th International Confer-
ence on Advanced Information Networking and Ap-
plications (AINA-2020), pages 1291–1302. Springer.
arXiv preprint arXiv:2001.08922. The updated ver-
sion of the RePAD algorithm from arXiv was used
here.
Lee, M.-C., Lin, J.-C., and Gran, E. G. (2021a). How far
should we look back to achieve effective real-time
time-series anomaly detection? In Advanced Infor-
mation Networking and Applications: Proceedings of
the 35th International Conference on Advanced In-
formation Networking and Applications (AINA-2021),
Volume 1, pages 136–148. Springer. arXiv preprint
arXiv:2102.06560.
Lee, M.-C., Lin, J.-C., and Gran, E. G. (2021b). SALAD:
Self-adaptive lightweight anomaly detection for real-
time recurrent time series. In 2021 IEEE 45th An-
nual Computers, Software, and Applications Confer-
ence (COMPSAC), pages 344–349. IEEE.
Lee, T. J., Gottschlich, J., Tatbul, N., Metcalf, E., and
Zdonik, S. (2018). Greenhouse: A zero-positive ma-
chine learning system for time-series anomaly detec-
tion. arXiv preprint arXiv:1801.03168.
Impact of Deep Learning Libraries on Online Adaptive Lightweight Time Series Anomaly Detection
115