Andersen, S., Giesl, P., and Hafstein, S. (2023). Common
Lyapunov functions for switched linear systems: Lin-
ear programming-based approach. IEEE Control Sys-
tems Letters, 7:901–906.
Aubin, J.-P. and Cellina, A. (1984). Differential Inclusions.
Springer.
Bakhshande, F., Bach, R., and S
¨
offker, D. (2020). Ro-
bust control of a hydraulic cylinder using an observer-
based sliding mode control: Theoretical development
and experimental validation. Control Engineering
Practice, 95:104272.
Blanchini, F. (1995). Nonquadratic Lyapunov functions for
robust control. Automatica, 31(3):451–461.
Blanchini, F. and Carabelli, S. (1994). Robust stabiliza-
tion via computer-generated Lyapunov functions: an
application to a magnetic levitation system. In Pro-
ceedings of the 33th IEEE Conference on Decision
and Control, volume 2, pages 1105–1106.
Blanchini, F. and Miani, S. (2008). Set-theoretic methods in
control. Systems & Control: Foundations & Applica-
tions. Birkh
¨
auser.
Boyd, S., El Ghaoui, L., Feron, E., and Balakrishnan,
V. (1994). Linear matrix inequalities in system and
control theory, volume 15 of SIAM Studies in Ap-
plied Mathematics. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA.
Brayton, R. and Tong, C. (1979). Stability of dynamical
systems: A constructive approach. IEEE Trans. Cir-
cuits and Systems, 26(4):224–234.
Brayton, R. and Tong, C. (1980). Constructive stability
and asymptotic stability of dynamical systems. IEEE
Trans. Circuits and Systems, 27(11):1121–1130.
Clarke, F. (1990). Optimization and Nonsmooth Analysis.
Classics in Applied Mathematics. SIAM.
Cohen, N. and Lewkowicz, I. (1993). A necessary and suf-
ficient criterion for the stability of a convex set of ma-
trices. IEEE Trans. Automat. Control, 38(4):611–615.
Giesl, P. and Hafstein, S. (2015). Review of computational
methods for Lyapunov functions. Discrete Contin.
Dyn. Syst. Ser. B, 20(8):2291–2331.
Goebel, R., Hu, T., and Teel, A. (2006). Current Trends
in Nonlinear Systems and Control. Systems and Con-
trol: Foundations & Applications, chapter Dual Ma-
trix Inequalities in Stability and Performance Analy-
sis of Linear Differential/Difference Inclusions, pages
103–122. Birkhauser.
Goebel, R., Sanfelice, R., and Teel, A. (2012). Hybrid Dy-
namical Systems. Princeton University Press.
Gr
¨
une, L. and Junge, O. (2016). Gew
¨
ohnliche Differential-
gleichungen. Springer, Wiesbaden, 2nd edition.
Gurobi Optimization, LLC (2023). Gurobi Optimizer Ref-
erence Manual.
Khalil, H. (2002). Nonlinear Systems. Pearson, 3. edition.
Liberzon, D. (2003). Switching in systems and control.
Systems & Control: Foundations & Applications.
Birkh
¨
auser.
L
¨
ofberg, J. (2004). YALMIP: A toolbox for modeling and
optimization in MATLAB. In In Proceedings of the
CACSD Conference, Taipei, Taiwan.
Mason, P., Boscain, U., and Chitour, Y. (2006). Common
polynomial Lyapunov functions for linear switched
systems. SIAM J. Control Optim., 45(1):226–245.
Mason, P., Chitour, T., and Sigalotti, M. (2022). On univer-
sal classes of Lyapunov functions for linear switched
systems. arXiv:2208.09179.
MATLAB (2022). 9.12.0.2039608 (R2022a) Update 5. The
MathWorks Inc., Natick, Massachusetts.
Molchanov, A. and Pyatnitskiy, E. (1986). Lyapunov func-
tions that specify necessary and sufficient conditions
of absolute stability of nonlinear nonstationary control
systems I, II. Automat. Remote Control, 47:344–354,
443–451.
Molchanov, A. and Pyatnitskiy, E. (1989). Criteria of
asymptotic stability of differential and difference in-
clusions encountered in control theory. Systems Con-
trol Lett., 13(1):59–64.
MOSEK ApS (2019). The MOSEK optimization toolbox for
MATLAB manual. Version 9.0.
Ohta, Y. (2001). On the construction of piecewise lin-
ear Lyapunov functions. In Proceedings of the 40th
IEEE Conference on Decision and Control., volume 3,
pages 2173–2178.
Ohta, Y. and Tsuji, M. (2003). A generalization of piece-
wise linear Lyapunov functions. In Proceedings of the
42nd IEEE Conference on Decision and Control., vol-
ume 5, pages 5091–5096.
Piccini, J., August, E., Hafstein, S., and Andersen, S.
(2023). Stability of switched systems with multiple
steady state solutions. In (submitted).
Polanski, A. (1997). Lyapunov functions construction by
linear programming. IEEE Trans. Automat. Control,
42:1113–1116.
Polanski, A. (2000). On absolute stability analysis by poly-
hedral Lyapunov functions. Automatica, 36:573–578.
Prajna, S. and Papachristodoulou, A. (2003). Analysis
of switched and hybrid systems - beyond piecewise
quadratic methods. In Proceedings of the 2003 Amer-
ican Control Conference, pages 2779–2784.
Sturm, J. (1999). Using SeDuMi 1.02, a MATLAB toolbox
for optimization over symmetric cones. Optimization
Methods and Software, 11–12:625–653. Version 1.05
available from http://fewcal.kub.nl/sturm.
Toh, K. C., Todd, M. J., and T
¨
ut
¨
unc
¨
u, R. H. (1999). Sdpt3 -
a matlab software package for semidefinite program-
ming, version 1.3. Optimization Methods and Soft-
ware, 11(1-4):545–581.
Veer, S. and Poulakakis, I. (2020). Switched systems with
multiple equilibria under disturbances: Boundedness
and practical stability. IEEE Transactions on Auto-
matic Control, 65(6):2371–2386.
Wang, K. and Michel, A. (1996). On the stability of a family
of nonlinear time-varying system. IEEE Trans. Cir-
cuits and Systems, 43(7):517–531.
Yfoulis, C. and Shorten, R. (2004). A numerical technique
for the stability analysis of linear switched systems.
Int. J. Control, 77(11):1019–1039.
Lyapunov Function Computation for Linear Switched Systems: Comparison of SDP and LP Approaches
69