for language understanding. In 2019 North American
Chapter of the ACL: Human Language Technologies,.
Etzioni, O., Cafarella, M., Downey, D., Kok, S., Popescu,
A. M., Shaked, T., Weld, S. S. S. D., and Yates, A.
(2004). Web-scale information extraction in know-
itall. In WWW. ACM.
Fader, A., Soderland, S., and Etzioni, O. (2011). Identify-
ing relations for open information extraction. In 2011
EMNLP. ACL.
Han, X., Zhu, H., Yu, P., Wang, Z., Yao, Y., and Sun, Z.
L. M. (2018). Fewrel: A large-scale supervised few-
shot relation classification dataset with state-of-the-art
evaluation. In 2018 EMNLP. ACL.
KBP (2017).
Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P.,
and Soricut, R. (2020). Albert: A lite bert for self-
supervised learning of language representations. In
8th ICLR.
Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kon-
tokostas, D., Mendes, P., Hellmann, S., Morsey, M.,
van Kleef, P., Auer, S., and Bizer, C. (2015). Db-
pedia - a large-scale, multilingual kb extracted from
wikipedia. Semantic Web Journal, 6(2):167–195.
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov,
V. (2019). Roberta: A robustly optimized bert pre-
training approach. In CoRR.
Lockard, C., Shiralkar, P., and Dong, X. L. (2019). When
open information extraction meets the semi-structured
web. In 2019 North American Chapter of the ACL:
Human Language Technologies.
Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J. R.,
Bethard, S., and McClosky, D. (2014). The stanford
corenlp natural language processing toolkit. In 52nd
Annual Meeting of the ACL: System Demonstrations.
Mausam (2016). Open information extraction systems and
downstream applications. In 25th IJCAI.
Mesquita, F., Cannaviccio, M., Schmide, J., Mirza, P.,
and Barbosa, D. (2019). Knowledgenet: A bench-
mark dataset for knowledge base population. In 2019
EMNLP and the 9th IJCNLP. ACL.
Mikolov, T., Sutskever, I., Chen, K., and Dean, G. S.
C. J. (2013). Distributed representations of words and
phrases and their compositionality. In 27th NIPS.
Mintz, M., Bills, S., Snow, R., and Jurafsky, D. (2009). Dis-
tant supervision for relation extraction without labeled
data. In Proceedings of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference
on NLP of the AFNL. ACL.
Nguyen, D. B., Hoffart, J., Theobald, M., and Weikum,
G. (2014). Aida-light: High-throughput named-entity
disambiguation. In Workshop on Linked Data on the
Web co-located with the 23rd WWW.
Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark,
C., Lee, K., and Zettlemoye, L. (2018). Deep contex-
tualized word representations. In 2018 North Ameri-
can Chapter of the ACL: Human Language Technolo-
gies. ACL.
Radford, A., Wu, J., Child, R. R., Luan, D., Amodei, D.,
and Sutskever, I. (2019). Language models are unsu-
pervised multitask learners.
Rehurek, R. and Sojka, P. (2011). Gensim–python frame-
work for vector space modelling. In NLP Centre, Fac-
ulty of Informatics.
Sachan, D. S., Zhang, Y., Qi, P., and Hamilton, W. L.
(2021). Do syntax trees help pre-trained transformers
extract information? In 16th EACL. ACL.
Sanh, V., Debut, L., Chaumond, J., and Wolf, T. (2020).
Distilbert, a distilled version of BERT: smaller, faster,
cheaper and lighter. In CoRR.
Soares, L. B., FitzGerald, N., Ling, J., and Kwiatkowski, T.
(2019). Matching the blanks: Distributional similarity
for relation learning. In 57th ACL. ACL.
Stanovsky, G., Dagan, I., and Mausam (2015). Open IE as
an intermediate structure for semantic tasks. In 53rd
Annual Meeting of the ACL and the 7th IJCNLP of the
Asian Federation of NLP. ACL.
Suchanek, F. M., Kasneci, G., and Weikum, G. (2007).
Yago: a core of semantic knowledge. In Proceedings
of the 16th international conference on WWW.
Trisedya, B. D., Weikum, G., Qi, J., and Zhang, R. (2019).
Neural relation extraction for knowledge base enrich-
ment. In Proceedings of the 57th Conference of the
ACL. ACL.
Tunstall, L., Jo, N. R. U. E. S., Bates, L., Korat, D.,
Wasserblat, M., and O.Pereg, O. (2022). Efficient few-
shot learning without prompts. In CoRR.
Vrande
ˇ
ci
´
c, D. and Kr
¨
otzsch, M. (2014). Wikidata: a free
collaborative knowledgebase. In Comm. of the ACM.
Wang, A., Singh, A., Micheal, J., Hill, F., Levy, O., and
Bowman, S. R. (2019). GLUE: A multi-task bench-
mark and analysis platform for natural language un-
derstanding. In 7th ICLR.
Wang, C., Liu, X., Chen, Z., Hong, H., Tang, J., and Song,
D. (2021a). Zero-shot information extraction as a uni-
fied text-to-triple translation. In 2021 EMNLP. ACL.
Wang, Y., Yao, Q., Kwok, T., and Ni, M. L. (2021b). Gen-
eralizing from a few examples: A survey on few-shot
learning. ACM Computing Surveys, 53(3):1–34.
Xu, K., Feng, Y., Reddy, S., Huang, S., and Zhao, D. (2016).
Enhancing freebase question answering using textual
evidence. In CoRR.
Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.,
and Le, Q. V. (2019). Xlnet: Generalized autoregres-
sive pretraining for language understanding. In 2019
NIPS.
Zhang, D., Mukherjee, S., Lockard, C., Dong, X. L., and
McCallum (2019a). Openki: Integrating open infor-
mation extraction and knowledge bases with relation
inference. In 2019 North American Chapter of the
ACL: Human Language Technologies.
Zhang, Z., Han, H., Liu, Z., Jiang, X., Sun, M., and Liu,
Q. (2019b). Ernie: Enhanced language representation
with informative entities. In 57th Annual Meeting of
the ACL. ACL.
Zhou, W. and Muhao, C. (2022). An improved baseline for
sentence-level relation extraction. In 2nd Asia-Pacific
Chapter of the ACL and the 12th IJCNLP.
DATA 2023 - 12th International Conference on Data Science, Technology and Applications
366