REFERENCES
Al Salti, I. and Zhang, N. (2022). LINK-GUARD:
An Effective and Scalable Security Framework for
Link Discovery in SDN Networks. IEEE Access,
10:130233–130252.
Alimohammadifar, A., Majumdar, S., Madi, T., Jarraya, Y.,
Pourzandi, M., Wang, L., and Debbabi, M. (2018).
Stealthy Probing-Based Verification (SPV): An Ac-
tive Approach to Defending Software Defined Net-
works Against Topology Poisoning Attacks. [Online;
accessed 11. Mar. 2023].
Baidya, S. S. and Hewett, R. (2020). Link discovery at-
tacks in software-defined networks: Topology poison-
ing and impact analysis. J. Commun., 15(8):596–606.
Brown, D. R. (2010). Sec 2: Recommended elliptic curve
domain parameters. Standars for Efficient Cryptogra-
phy.
Chou, L.-D., Liu, C.-C., Lai, M.-S., Chiu, K.-C., Tu, H.-H.,
Su, S., Lai, C.-L., Yen, C.-K., and Tsai, W.-H. (2020).
Behavior anomaly detection in sdn control plane: a
case study of topology discovery attacks. Wireless
Communications and Mobile Computing, 2020:1–16.
Committee, L. S. et al. (2009). Ieee standard for local and
metropolitan area networks–station and media access
control connectivity discovery.
De Rango, F., Potrino, G., Tropea, M., and Fazio, P. (2020).
Energy-aware dynamic internet of things security sys-
tem based on elliptic curve cryptography and mes-
sage queue telemetry transport protocol for mitigat-
ing replay attacks. Pervasive and Mobile Computing,
61:101105.
Fazio, P., Tropea, M., Voznak, M., and De Rango, F. (2020).
On packet marking and markov modeling for ip trace-
back: A deep probabilistic and stochastic analysis.
Computer Networks, 182:107464.
Fioravanti, G., Spina, M. G., and De Rango, F. (2023). En-
tropy based ddos detection in software defined net-
works. In 2023 IEEE 20th Consumer Communica-
tions & Networking Conference (CCNC), pages 636–
639. IEEE.
Gao, Y. and Xu, M. (2022). Defense against software-
defined network topology poisoning attacks. Tsinghua
Science and Technology, 28(1):39–46.
Gentile, A. F., Fazio, P., and Miceli, G. (2021). A survey
on the implementation and management of secure vir-
tual private networks (vpns) and virtual lans (vlans)
in static and mobile scenarios. In Telecom, volume 2,
pages 430–445. MDPI.
Hong, S., Xu, L., Wang, H., and Gu, G. (2015). Poisoning
network visibility in software-defined networks: New
attacks and countermeasures. In Ndss, volume 15,
pages 8–11.
Iqbal, M., Iqbal, F., Mohsin, F., Rizwan, M., and Ahmad, F.
(2019). Security issues in software defined network-
ing (sdn): risks, challenges and potential solutions.
International Journal of Advanced Computer Science
and Applications, 10(10).
Jimenez, M. B., Fernandez, D., Rivadeneira, J. E., Bellido,
L., and Cardenas, A. (2021). A survey of the main
security issues and solutions for the sdn architecture.
IEEE Access, 9:122016–122038.
Li, W., Meng, W., and Kwok, L. F. (2016). A survey on
openflow-based software defined networks: Security
challenges and countermeasures. Journal of Network
and Computer Applications, 68:126–139.
Liu, Y., Zhao, B., Zhao, P., Fan, P., and Liu, H. (2019).
A survey: Typical security issues of software-defined
networking. China Communications, 16(7):13–31.
Marin, E., Bucciol, N., and Conti, M. (2019). An in-depth
look into sdn topology discovery mechanisms: Novel
attacks and practical countermeasures. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, pages 1101–1114.
Melkov, D. and Paulikas, S. (2021). Security benefits and
drawbacks of software-defined networking. In 2021
IEEE Open Conference of Electrical, Electronic and
Information Sciences (eStream), pages 1–4. IEEE.
Nguyen, T.-H. and Yoo, M. (2017). Analysis of link dis-
covery service attacks in sdn controller. In 2017
International Conference on Information Networking
(ICOIN), pages 259–261. IEEE.
Popic, S., Vuleta, M., Cvjetkovic, P., and Todorovi
´
c, B. M.
(2020). Secure topology detection in software-defined
networking with network configuration protocol and
link layer discovery protocol. In 2020 International
Symposium on Industrial Electronics and Applica-
tions (INDEL), pages 1–5. IEEE.
Potrino, G., De Rango, F., and Santamaria, A. F. (2019).
Modeling and evaluation of a new iot security system
for mitigating dos attacks to the mqtt broker. In 2019
IEEE Wireless Communications and Networking Con-
ference (WCNC), pages 1–6. IEEE.
Rahouti, M., Xiong, K., Xin, Y., Jagatheesaperumal, S. K.,
Ayyash, M., and Shaheed, M. (2022). Sdn security re-
view: Threat taxonomy, implications, and open chal-
lenges. IEEE Access, 10:45820–45854.
Saho, N. J. G. and Ezin, E. C. (2020). Comparative study
on the performance of elliptic curve cryptography al-
gorithms with cryptography through rsa algorithm. In
CARI 2020-Colloque Africain sur la Recherche en In-
formatique et en Math
´
ematiques Apliqu
´
ees.
Su
´
arez-Albela, M., Fraga-Lamas, P., and Fern
´
andez-
Caram
´
es, T. M. (2018). A practical evaluation on
rsa and ecc-based cipher suites for iot high-security
energy-efficient fog and mist computing devices. Sen-
sors, 18(11):3868.
Tropea, M. and Palmieri, N. (2022). Software defined net-
working emulator for network application testing. In
Open Architecture/Open Business Model Net-Centric
Systems and Defense Transformation 2022, volume
12119, pages 50–61. SPIE.
Tropea, M., Spina, M. G., De Rango, F., and Gentile, A. F.
(2022). Security in wireless sensor networks: A cryp-
tography performance analysis at mac layer. Future
Internet, 14(5):145.
Mitigation of LLDP Topological Poisoning Attack in SDN Environments Using Mininet Emulator
325