ACKNOWLEDGEMENTS
This work has been supported by national funds
through FCT - Fundação para a Ciência e Tecnologia
through project UIDB/04728/2020 and PhD grant:
2022.12728.BD.
REFERENCES
Bianchini, D., de Antonellis, V., Garda, M., & Melchiori,
M. (2019). Using a Smart City ontology to support
personalised exploration of urban data (discussion
paper). CEUR Workshop Proceedings, 2400.
Blomqvist, E., Maynard, D., Gangemi, A., Santos, H.,
Dantas, V., Furtado, V., Pinheiro, P., & McGuinness,
D. L. (2017). From Data to City Indicators: A
Knowledge Graph for Supporting Automatic
Generation of Dashboards. Lecture Notes in Computer
Science (Including Subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in
Bioinformatics), 10249 LNCS, V–VII. https://doi.org/
10.1007/978-3-319-58451-5
Dibowski, H., & Schmid, S. (2021). Using Knowledge
Graphs to Manage a Data Lake. Informaitk 2020,
Lecture Notes in Informatics (LNI), January, 41–50.
Dibowski, H., Schmid, S., Svetashova, Y., Henson, C., &
Tran, T. (2020). Using semantic technologies to
manage a data lake: Data catalog, provenance and
access control. CEUR Workshop Proceedings, 2757,
65–80.
Eichler, R., Giebler, C., Gröger, C., Schwarz, H., &
Mitschang, B. (2021). Modeling metadata in data
lakes—A generic model. Data & Knowledge
Engineering, 136, 101931. https://doi.org/https://
doi.org/10.1016/j.datak.2021.101931
Fensel, D., Şimşek, U., Angele, K., Huaman, E., Kärle, E.,
Panasiuk, O., Toma, I., Umbrich, J., & Wahler, A.
(2020). Knowledge Graphs. Springer International
Publishing. https://doi.org/10.1007/978-3-030-37439-6
Guido De Simoni. (2021, October 12). Market Guide for
Active Metadata Management. Gartner Research.
https://www.gartner.com/en/documents/4006759
Kimball, R., & Ross, M. (2013). The Data Warehouse
Toolkit, The Definitive Guide to Dimensional
Modeling (Third). John Wiley & Sons.
https://doi.org/10.1145/945721.945741
Kimball, R., & Rosse, M. (2016). The Kimball Group
Reader - Relentlessly Practical Tools for Data
Warehousing and Business Intelligence. In Relentlessly
Practical Tools for Data Warehousing and Business
Intelligence Remastered. Wiley.
Lavalle, A., Maté, A., Trujillo, J., Teruel, M. A., & Rizzi,
S. (2021). A methodology to automatically translate
user requirements into visualizations: Experimental
validation. Information and Software Technology, 136,
106592. https://doi.org/10.1016/j.infsof.2021.106592
Megdiche Imen and Ravat, F. and Z. Y. (2021). Metadata
Management on Data Processing in Data Lakes. In R.
and G. J. and G. G. and J. T. and P. C. and S. F. and W.
P. W. H. Bureš Tomáš and Dondi (Ed.), SOFSEM
2021: Theory and Practice of Computer Science (pp.
553–562). Springer International Publishing.
Ravat Franck and Zhao, Y. (2019). Data Lakes: Trends and
Perspectives. In J. and C. S. and A.-K. G. and T. A. M.
and K. I. Hartmann Sven and Küng (Ed.), Database and
Expert Systems Applications (pp. 304–313). Springer
International Publishing.
Sawadogo, P., & Darmont, J. (2021). On data lake
architectures and metadata management. Journal of
Intelligent Information Systems, 56(1), 97–120.
https://doi.org/10.1007/s10844-020-00608-7
Scholly, E., Sawadogo, P., Liu, P., Espinosa-Oviedo, J. A.,
Favre, C., Loudcher, S., Darmont, J., & Noûs, C.
(2021). Coining goldMEDAL: A New Contribution to
Data Lake Generic Metadata Modeling.
http://arxiv.org/abs/2103.13155
Wells, D. (2019). An Introduction to Data Catalogs: The
Future of Data Management.
Zaidi, E., Simoni, G. de, Edjlali, R., & Alan D. Duncan.
(2017). Data Catalogs Are the New Black in Data
Management and Analytics.