REFERENCES
Ahmed, T., Bosu, A., Iqbal, A., and Rahimi, S. (2017). Sen-
ticr: a customized sentiment analysis tool for code re-
view interactions. In 2017 32nd IEEE/ACM Interna-
tional Conference on Automated Software Engineer-
ing (ASE), pages 106–111. IEEE.
Batra, H., Punn, N. S., Sonbhadra, S. K., and Agarwal, S.
(2021). Bert-based sentiment analysis: A software
engineering perspective. In International Conference
on Database and Expert Systems Applications, pages
138–148. Springer.
Calefato, F., Lanubile, F., Maiorano, F., and Novielli,
N. (2018). Sentiment polarity detection for soft-
ware development. Empirical Software Engineering,
23(3):1352–1382.
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2018). Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint
arXiv:1810.04805.
Huq, S. F., Sadiq, A. Z., and Sakib, K. (2020). Is developer
sentiment related to software bugs: An exploratory
study on github commits. In 2020 IEEE 27th Inter-
national Conference on Software Analysis, Evolution
and Reengineering (SANER), pages 527–531. IEEE.
Islam, M. R. and Zibran, M. F. (2016). Towards under-
standing and exploiting developers’ emotional varia-
tions in software engineering. In 2016 IEEE 14th In-
ternational Conference on Software Engineering Re-
search, Management and Applications (SERA), pages
185–192. IEEE.
Islam, M. R. and Zibran, M. F. (2017). Leveraging au-
tomated sentiment analysis in software engineering.
In 2017 IEEE/ACM 14th International Conference on
Mining Software Repositories (MSR), pages 203–214.
IEEE.
Islam, M. R. and Zibran, M. F. (2018a). Deva: sensing emo-
tions in the valence arousal space in software engi-
neering text. In Proceedings of the 33rd annual ACM
symposium on applied computing, pages 1536–1543.
Islam, M. R. and Zibran, M. F. (2018b). Sentistrength-se:
Exploiting domain specificity for improved sentiment
analysis in software engineering text. Journal of Sys-
tems and Software, 145:125–146.
Lin, B., Zampetti, F., Bavota, G., Di Penta, M., Lanza, M.,
and Oliveto, R. (2018). Sentiment analysis for soft-
ware engineering: How far can we go? In Proceed-
ings of the 40th international conference on software
engineering, pages 94–104.
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov,
V. (2019). Roberta: A robustly optimized bert pre-
training approach. arXiv preprint arXiv:1907.11692.
Medhat, W., Hassan, A., and Korashy, H. (2014). Sentiment
analysis algorithms and applications: A survey. Ain
Shams engineering journal, 5(4):1093–1113.
Miller, G. A. (1995). Wordnet: a lexical database for en-
glish. Communications of the ACM, 38(11):39–41.
Mishra, S. and Sharma, A. (2021). Crawling wikipedia
pages to train word embeddings model for software
engineering domain. In 14th Innovations in Soft-
ware Engineering Conference (formerly known as In-
dia Software Engineering Conference), pages 1–5.
Novielli, N., Calefato, F., Dongiovanni, D., Girardi, D., and
Lanubile, F. (2020). Can we use se-specific sentiment
analysis tools in a cross-platform setting? In Proceed-
ings of the 17th International Conference on Mining
Software Repositories, pages 158–168.
Ortu, M., Adams, B., Destefanis, G., Tourani, P., Marchesi,
M., and Tonelli, R. (2015). Are bullies more produc-
tive? empirical study of affectiveness vs. issue fixing
time. In 2015 IEEE/ACM 12th Working Conference on
Mining Software Repositories, pages 303–313. IEEE.
Pennacchiotti, M. and Popescu, A.-M. (2011). Democrats,
republicans and starbucks afficionados: user classifi-
cation in twitter. In Proceedings of the 17th ACM
SIGKDD international conference on Knowledge dis-
covery and data mining, pages 430–438.
Pletea, D., Vasilescu, B., and Serebrenik, A. (2014). Secu-
rity and emotion: sentiment analysis of security dis-
cussions on github. In Proceedings of the 11th work-
ing conference on mining software repositories, pages
348–351.
Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning,
C. D., Ng, A. Y., and Potts, C. (2013). Recursive
deep models for semantic compositionality over a sen-
timent treebank. In Proceedings of the 2013 confer-
ence on empirical methods in natural language pro-
cessing, pages 1631–1642.
Thelwall, M., Buckley, K., Paltoglou, G., Cai, D., and Kap-
pas, A. (2010). Sentiment strength detection in short
informal text. Journal of the American society for in-
formation science and technology, 61(12):2544–2558.
Villarroel, L., Bavota, G., Russo, B., Oliveto, R., and
Di Penta, M. (2016). Release planning of mobile apps
based on user reviews. In 2016 IEEE/ACM 38th Inter-
national Conference on Software Engineering (ICSE),
pages 14–24. IEEE.
Wei, J. and Zou, K. (2019). Eda: Easy data augmentation
techniques for boosting performance on text classifi-
cation tasks. arXiv preprint arXiv:1901.11196.
Wrobel, M. R. (2016). Towards the participant observa-
tion of emotions in software development teams. In
2016 Federated Conference on Computer Science and
Information Systems (FedCSIS), pages 1545–1548.
IEEE.
Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov,
R. R., and Le, Q. V. (2019). Xlnet: Generalized au-
toregressive pretraining for language understanding.
Advances in neural information processing systems,
32.
Zhang, T., Xu, B., Thung, F., Haryono, S. A., Lo, D., and
Jiang, L. (2020). Sentiment analysis for software en-
gineering: How far can pre-trained transformer mod-
els go? In 2020 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages
70–80. IEEE.
Effectiveness of Data Augmentation and Ensembling Using Transformer-Based Models for Sentiment Analysis: Software Engineering
Perspective
447