query answering on summarized sensor network read-
ings. In OTM 2004 Workshops, 2004, volume 3292,
pages 144–153.
Cuzzocrea, A., Leung, C. K., and MacKinnon, R. K. (2014).
Mining constrained frequent itemsets from distributed
uncertain data. Future Gener. Comput. Syst., 37:117–
126.
Cuzzocrea, A., Martinelli, F., Mercaldo, F., and Vercelli,
G. V. (2017). Tor traffic analysis and detection via
machine learning techniques. In IEEE BigData, 2017,
pages 4474–4480. IEEE Computer Society.
Dash, S., Shakyawar, S. K., Sharma, M., and Kaushik, S.
(2019). Big data in healthcare: management, analysis
and future prospects. J. Big Data, 6:54.
Dimitsaki, S., Gavriilidis, G. I., Dimitriadis, V. K., and Nat-
siavas, P. (2023). Benchmarking of machine learning
classifiers on plasma proteomic for COVID-19 sever-
ity prediction through interpretable artificial intelli-
gence. Artif. Intell. Medicine, 137:102490.
Ding, J., Errapotu, S. M., Guo, Y., Zhang, H., Yuan, D.,
and Pan, M. (2022). Private empirical risk minimiza-
tion with analytic gaussian mechanism for healthcare
system. IEEE Trans. Big Data, 8(4):1107–1117.
Elgammal, A. and Kr
¨
amer, B. J. (2021). A reference ar-
chitecture for smart digital platform for personalized
prevention and patient management. In Next-Gen
Digital Services. A Retrospective and Roadmap for
Service Computing of the Future - Essays Dedicated
to Michael Papazoglou on the Occasion of His 65th
Birthday and His Retirement, volume 12521, pages
88–99.
Fu, X., Zhang, B., Dong, Y., Chen, C., and Li, J. (2022).
Federated graph machine learning: A survey of con-
cepts, techniques, and applications. SIGKDD Explor.,
24(2):32–47.
Ghayvat, H., Pandya, S., Bhattacharya, P., Zuhair, M.,
Rashid, M., Hakak, S., and Dev, K. (2022). CP-
BDHCA: blockchain-based confidentiality-privacy
preserving big data scheme for healthcare clouds and
applications. IEEE J. Biomed. Health Informatics,
26(5):1937–1948.
Gounaris, A. and Torres, J. (2018). A methodology for
spark parameter tuning. Big Data Res., 11:22–32.
Leung, C. K., Cuzzocrea, A., Mai, J. J., Deng, D., and
Jiang, F. (2019). Personalized deepinf: Enhanced so-
cial influence prediction with deep learning and trans-
fer learning. In IEEE BigData, 2019, pages 2871–
2880. IEEE.
Lin, C., Song, Z., Song, H., Zhou, Y., Wang, Y., and
Wu, G. (2016). Differential privacy preserving in big
data analytics for connected health. J. Medical Syst.,
40(4):97:1–97:9.
Liu, C., Yao, Z., Liu, P., Tu, Y., Chen, H., Cheng, H., Xie,
L., and Xiao, K. (2023a). Early prediction of MODS
interventions in the intensive care unit using machine
learning. J. Big Data, 10(1):55.
Liu, X., Hasan, M. R., Ahmed, K. A., and Hossain, M. Z.
(2023b). Machine learning to analyse omic-data for
COVID-19 diagnosis and prognosis. BMC Bioinform.,
24(1):7.
Mohamed, M. A., El-Henawy, I. M., and Salah, A.
(2021). Usages of spark framework with different ma-
chine learning algorithms. Comput. Intell. Neurosci.,
2021:1896953:1–1896953:7.
Omran, N. F., Ghany, S. F. A., Saleh, H., and Nabil, A.
(2021). Breast cancer identification from patients’
tweet streaming using machine learning solution on
spark. Complex., 2021:6653508:1–6653508:12.
Onesimu, J. A., Karthikeyan, J., Eunice, J., Pomplun, M.,
and Dang, H. (2022). Privacy preserving attribute-
focused anonymization scheme for healthcare data
publishing. IEEE Access, 10:86979–86997.
Parimanam, K., Lakshmanan, L., and Palaniswamy, T.
(2022). Hybrid optimization based learning technique
for multi-disease analytics from healthcare big data
using optimal pre-processing, clustering and classifier.
Concurr. Comput. Pract. Exp., 34(17).
Patil, H. K. and Seshadri, R. (2014). Big data security and
privacy issues in healthcare. In IEEE Congress on Big
Data, 2014, pages 762–765. IEEE Computer Society.
QUALITOP (2023). The QUALITOP project.
https://h2020qualitop.liris.cnrs.fr/wordpress/index.
php/project/.
Singh, S., Rathore, S., Alfarraj, O., Tolba, A., and Yoon,
B. (2022). A framework for privacy-preservation
of iot healthcare data using federated learning and
blockchain technology. Future Gener. Comput. Syst.,
129:380–388.
Sun, J. and Reddy, C. K. (2013). Big data analytics for
healthcare. In ACM SIGKDD KDD, 2013, page 1525.
ACM.
Sweeney, L. (2002). k-anonymity: A model for protecting
privacy. Int. J. Uncertain. Fuzziness Knowl. Based
Syst., 10(5):557–570.
Tan, Q., Xu, X., and Liang, H. (2023). Physiological big
data mining through machine learning and wireless
sensor networks. Int. J. Distributed Syst. Technol.,
14(2):1–12.
Vinke, P. C., Combalia, M., de Bock, G. H., Leyrat, C.,
Spanjaart, A. M., Dalle, S., da Silva, M. G., Essongue,
A. F., Rabier, A., Pannard, M., Jalali, M. S., Elgam-
mal, A., Papazoglou, M., Hacid, M.-S., Rioufol, C.,
Kersten, M.-J., van Oijen, M. G., Suazo-Zepeda, E.,
Malhotra, A., Coquery, E., Anota, A., Preau, M., Fau-
vernier, M., Coz, E., Puig, S., and Maucort-Boulch,
D. (2023). Monitoring multidimensional aspects of
quality of life after cancer immunotherapy: protocol
for the international multicentre, observational quali-
top cohort study. BMJ Open, 13(4).
Yang, Q., Liu, Y., Chen, T., and Tong, Y. (2019). Federated
machine learning: Concept and applications. ACM
Trans. Intell. Syst. Technol., 10(2):12:1–12:19.
Zhang, H., Chen, G., Ooi, B. C., Tan, K., and Zhang, M.
(2015). In-memory big data management and pro-
cessing: A survey. IEEE Trans. Knowl. Data Eng.,
27(7):1920–1948.
DATA 2023 - 12th International Conference on Data Science, Technology and Applications
428