Oktaviani, W. N., Tambusay, A., Sutrisno, W., Komara, I.,
& Suprobo, P. (n.d.). Flexural Behavior of Reinforced
Concrete Beam Blended with Fly ash as Supplementary
Material.
Peng, J., Zhao, P., Wang, S., Wee, S., & Kang, S. (2019).
Interface shear transfer in reinforced engineered
cementitious composites under push-off loads.
Engineering Structures, April, 110013.
https://doi.org/10.1016/j.engstruct.2019.110013
Pimanmas, A., & Maekawa, K. (2001). Influence of Pre-
Cracking on Reinforced Concrete Behavior in Shear.
Jsce, 38(38), 207–223.
Quraishi, M., Nayak, D., Kumar, R., & Kumar, V. (2017).
Corrosion of Reinforced Steel in Concrete and Its
Control: An overview. Journal of Steel Structures &
Construction, 03(01), 1–6.
https://doi.org/10.4172/2472-0437.1000124
Rao, A., Jha, K. N., & Misra, S. (2007). Use of aggregates
from recycled construction and demolition waste in
concrete. 50, 71–81.
https://doi.org/10.1016/j.resconrec.2006.05.010
Redwood, R. G. (2011). Design of Composite Beams With
Web Openings. (Issue April).
https://doi.org/10.13140/RG.2.2.19276.62085
Setina, J., Gabrene, A., & Juhnevica, I. (2013). Effect of
pozzolanic additives on structure and chemical
durability of concrete. Procedia Engineering, 57,
1005–1012.
https://doi.org/10.1016/j.proeng.2013.04.127
Shu, A.-, Salman, M., Akinpelu, M. A., & Ahmed, G. A.
(2021). Evaluation of variations of coarse aggregate
types on hardened properties of concrete Evaluation of
variations of coarse aggregate types on hardened
properties of concrete. September.
Suryanto, B., McCarter, W. J., Starrs, G., Wilson, S. A., &
Traynor, R. M. (2015). Smart cement composites for
durable and intelligent infrastructure. Procedia
Engineering, 125, 796–803.
https://doi.org/10.1016/j.proeng.2015.11.139
Taklas, M., Leblouba, M., Barakat, S., & Al-sadoon, Z. A.
(2022). Concrete-to-concrete shear friction behavior
under cyclic loading. 01001.
Taklas, M., Leblouba, M., Barakat, S., Fageeri, A., &
Mohamad, F. (2022). Concrete ‑ to ‑ concrete shear
friction behavior under cyclic loading : experimental
investigation. Scientific Reports, 1–21.
https://doi.org/10.1038/s41598-022-13530-5
Teo, M. M. M., & Loosemore, M. (2010). A theory of waste
behaviour in the construction industry A theory of
waste behaviour in the construction industry.
September 2013
, 37–41.
https://doi.org/10.1080/01446190110067037
Van Tittelboom, K., & De Belie, N. (2013). Self-healing in
cementitious materials-a review. In Materials (Vol. 6,
Issue 6). https://doi.org/10.3390/ma6062182
Walraven, J., Frenay, J., & Pruijssers, A. (1987). Shear
Friction Capacity. PCI Journal, 1, 66–84.
Wang, S., & Li, V. C. (2007). High-Early-Strength
Engineered Cementitious Composites. 103, 97–105.
Wang, X., Sun, K., Shao, J., & Ma, J. (2022). Study on
Mechanical and Rheological Properties of Solid.
Buildings, 12(1690), 1–11.
Wong, H. S., Zhao, Y. X., Karimi, A. R., Buenfeld, N. R.,
& Jin, W. L. (2010). On the penetration of corrosion
products from reinforcing steel into concrete due to
chloride-induced corrosion. Corrosion Science, 52(7),
2469–2480.
https://doi.org/10.1016/j.corsci.2010.03.025
Wright, R. F., Lu, P., Devkota, J., Lu, F., Ziomek-Moroz,
M., & Ohodnicki, P. R. (2019). Corrosion sensors for
structural health monitoring of oil and natural gas
infrastructure: A review. Sensors (Switzerland), 19(18).
https://doi.org/10.3390/s19183964
Wu, C., & Li, V. C. (2017). CFRP-ECC hybrid for
strengthening of the concrete structures. Composite
Structures, 178(July), 372–382.
https://doi.org/10.1016/j.compstruct.2017.07.034
Wu, H. L., Yu, J., Zhang, D., Zheng, J. X., & Li, V. C.
(2019). Effect of morphological parameters of natural
sand on mechanical properties of engineered
cementitious composites. Cement and Concrete
Composites, 100(November 2018), 108–119.
https://doi.org/10.1016/j.cemconcomp.2019.04.007
Xia, J., Shan, K., Wu, X., Gan, R., & Jin, W. (2021). Shear-
friction behavior of concrete-to-concrete interface
under direct shear load. Engineering Structures,
238(April), 112211.
https://doi.org/10.1016/j.engstruct.2021.112211
Yang, K. H., & Lee, K. H. (2019). Shear Friction
Characteristics and Modification Factor of Concrete
Prepared Using Expanded Bottom Ash and Dredged
Soil Granules. International Journal of Concrete
Structures and Materials.
https://doi.org/10.1186/s40069-019-0364-x
Zhang, D., Gao, S., & Gong, J. (2012). Seismic behaviour
of steel beam to circular CFST column assemblies with
external diaphragms. Journal of Constructional Steel
Research, 76, 155–166.
https://doi.org/10.1016/j.jcsr.2012.03.024
ZHANG, R., MATSUMOTO, K., HIRATA, T., ISHIZEKI,
Y., & NIWA, J. (2014). Shear Behavior of
Polypropylene Fiber Reinforced Ecc Beams With
Varying Shear Reinforcement Ratios. Journal of JSCE
,
2(1), 39–53.
https://doi.org/10.2208/journalofjsce.2.1_39
Zhang, W., Yin, C., Ma, F., & Huang, Z. (2018).
Mechanical properties and carbonation durability of
engineered cementitious composites reinforced by
polypropylene and hydrophilic polyvinyl alcohol
fibers. Materials, 11(7).
https://doi.org/10.3390/ma11071147
Zhao, P., Kang, S., & Yang, B. (2017). ScienceDirect Shear
Strength of Engineered Cementitious Composites under
Push- Off Loads. Procedia Engineering, 210, 53–60.
https://doi.org/10.1016/j.proeng.2017.11.048
Zhao, P. Z., Kang, S. B., & Yang, B. (2017). Shear Strength
of Engineered Cementitious Composites under Push-
Off Loads. Procedia Engineering, 210, 53–60.
https://doi.org/10.1016/j.proeng.2017.11.048