Regarding programming language threat, the dataset
could generalize other datasets developed using
object-oriented PHP and MVC.
6 CONCLUSIONS
We introduced a new dataset for traceability and
discussed the method through which expert software
developers built it. Our dataset is intended to aid in
exploring various requirement-to-code, requirement-
to-design, and design-to-code traceability research
issues by the software engineering community.
In the future, the next generation of the Monthes
dataset will extend the traceability granularity of
requirement-to-code and design-to-code to fine-
grained. This extension would allow trace up to the
method level.
ACKNOWLEDGEMENTS
This work was supported by Institut Teknologi
Sepuluh Nopember, Indonesia through the
Department Research scheme (Skema Penelitian
Dana Departemen) under grant no.
1732/PKS/ITS/2022.
REFERENCES
Ahmadiyah, A. S., Rochimah, S., & Siahaan, D. (2022).
Semantic Software Traceability Using Property Listing
Task: Pilot Study. 387–392.
https://doi.org/10.1109/ies55876.2022.9888365
Ali, N., Guéhéneuc, Y. G., & Antoniol, G. (2012). Factors
impacting the inputs of traceability recovery
approaches. In Software and Systems Traceability (Vol.
9781447122395, pp. 99–127). Springer-Verlag London
Ltd. https://doi.org/10.1007/978-1-4471-2239-5_5
Charalampidou, S., Ampatzoglou, A., Karountzos, E., &
Avgeriou, P. (2021). Empirical studies on software
traceability: A mapping study. Journal of Software:
Evolution and Process, 33(2).
https://doi.org/10.1002/smr.2294
de Lucia, A., Fasano, F., Oliveto, R., & Tortora, G. (2005).
ADAMS re-trace: A traceability recovery tool.
Proceedings of the European Conference on Software
Maintenance and Reengineering, CSMR, 32–41.
https://doi.org/10.1109/CSMR.2005.7
Fauzan, R., Siahaan, D., Rochimah, S., & Triandini, E.
(2021). Automated Class Diagram Assessment using
Semantic and Structural Similarities. International
Journal of Intelligent Engineering and Systems, 14(2),
52–66. https://doi.org/10.22266/ijies2021.0430.06
Hayes, J. H., Payne, J., & Dekhtyar, A. (2018). The
REquirements TRacing On Target (RETRO).NET
Dataset; The REquirements TRacing On Target
(RETRO).NET Dataset.
https://doi.org/10.5281/zenodo.1223649
Katayama, T., Mori, K., Kita, Y., Yamaba, H., Aburada, K.,
& Okazaki, N. (2018). RETUSS: Ensuring Traceability
System between Class Diagram in UML and Java
Source Code in Real Time.
Keenan, E., Czauderna, A., Leach, G., Cleland-Huang, J.,
Shin, Y., Moritz, E., Gethers, M., Poshyvanyk, D.,
Maletic, J., Hayes, J. H., Dekhtyar, A., Manukian, D.,
Hossein, S., & Hearn, D. (2012). TraceLab: An
experimental workbench for equipping researchers to
innovate, synthesize, and comparatively evaluate
traceability solutions. Proceedings - International
Conference on Software Engineering, 1375–1378.
https://doi.org/10.1109/ICSE.2012.6227244
Lin, J., Lin, C. C., Cleland-Huang, J., Settimi, R., Amaya,
J., Bedford, G., Berenbach, B., Khadra, O. ben, Duan,
C., & Zou, X. (2006). Poirot: A Distributed Tool
Supporting Enterprise-Wide Automated Traceability.
Mahmoud, A., & Niu, N. (2011). TraCter: A tool for
candidate traceability link clustering. Proceedings of
the 2011 IEEE 19th International Requirements
Engineering Conference, RE 2011, 335–336.
https://doi.org/10.1109/RE.2011.6051663
Rath, M. (2019). The SEOSS 33 dataset - Requirements,
bug reports, code history, and trace links for entire
projects. https://doi.org/10.7910/DVN/PDDZ4Q
Saiedian, H. (2009). Why Software Requirements
Traceability Remains a Challenge.
www.stsc.hill.af.mil
Zogaan, W., Sharma, P., Mirahkorli, M., & Arnaoudova, V.
(2017). Datasets from Fifteen Years of Automated
Requirements Traceability Research: Current State,
Characteristics, and Quality. Proceedings - 2017 IEEE
25th International Requirements Engineering
Conference, RE 2017, 110–121.
https://doi.org/10.1109/RE.2017.80